分析 (1)由$\sqrt{x}$,$\frac{\sqrt{f(x)}}{2}$,$\sqrt{3}$都成等差数列,可得$\sqrt{f(x)}=\sqrt{x}+\sqrt{3}$,结合Sn+1=f(Sn),得到数列{$\sqrt{{S}_{n}}$}构成以$\sqrt{{S}_{1}}=\sqrt{3}$为首项,以$\sqrt{3}$为公差的等差数列,求得${S}_{n}=3{n}^{2}$.得当n≥2时,${a}_{n}={S}_{n}-{S}_{n-1}=3{n}^{2}-3(n-1)^{2}=6n-3$.验证首项后得答案;
(2)$\sqrt{{b}_{n}}$是$\frac{3}{{a}_{n+1}}$,$\frac{3}{{a}_{n}}$的等比中项,得则${b}_{n}=\frac{9}{{a}_{n+1}{a}_{n}}=\frac{9}{(6n+3)(6n-3)}=\frac{1}{(2n+1)(2n-1)}$,然后利用裂项相消法求得数列{bn}前n项和Tn.
解答 解:(1)∵$\sqrt{x}$,$\frac{\sqrt{f(x)}}{2}$,$\sqrt{3}$成等差数列,∴$\sqrt{f(x)}=\sqrt{x}+\sqrt{3}$,
则f(x)=x+3+$2\sqrt{3x}$,
又正项数列{an}中,a1=3,其前n项和Sn满足Sn+1=f(Sn),
∴${S}_{n+1}={S}_{n}+3+2\sqrt{3}\sqrt{{S}_{n}}$=$(\sqrt{{S}_{n}}+\sqrt{3})^{2}$,
即$\sqrt{{S}_{n+1}}=\sqrt{{S}_{n}}+\sqrt{3}$.
∴数列{$\sqrt{{S}_{n}}$}构成以$\sqrt{{S}_{1}}=\sqrt{3}$为首项,以$\sqrt{3}$为公差的等差数列,
则$\sqrt{{S}_{n}}=\sqrt{3}+(n-1)•\sqrt{3}=\sqrt{3}n$,
∴${S}_{n}=3{n}^{2}$.
当n≥2时,${a}_{n}={S}_{n}-{S}_{n-1}=3{n}^{2}-3(n-1)^{2}=6n-3$.
a1=3适合上式,
∴an=6n-3;
(2)若$\sqrt{{b}_{n}}$是$\frac{3}{{a}_{n+1}}$,$\frac{3}{{a}_{n}}$的等比中项,
则${b}_{n}=\frac{9}{{a}_{n+1}{a}_{n}}=\frac{9}{(6n+3)(6n-3)}=\frac{1}{(2n+1)(2n-1)}$=$\frac{1}{2}(\frac{1}{2n-1}-\frac{1}{2n+1})$.
∴Tn=$\frac{1}{2}(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+…+\frac{1}{2n-1}-\frac{1}{2n+1})$=$\frac{1}{2}(1-\frac{1}{2n+1})=\frac{n}{2n+1}$.
点评 本题考查数列的函数特性,考查了数列递推式,考查了等比关系的确定,训练了裂项相消法求数列的和,是中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com