【题目】如图,四棱锥
中,底面
是平行四边形,
,
,且
底面
.
![]()
(1)证明:平面
平面
;
(2)若二面角
为
,求
与平面
所成角的正弦值.
科目:高中数学 来源: 题型:
【题目】如图,已知三棱锥A-BPC中,![]()
,M为AB的中点,D为PB的中点,且
为正三角形.
![]()
(1)求证:
平面APC;
(2)若
,
,求三棱锥D-BCM的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知定点
,动点P是圆M:
上的任意一点,线段NP的垂直平分线和半径MP相交于点Q.
求
的值,并求动点Q的轨迹C的方程;
若圆
的切线l与曲线C相交于A,B两点,求
面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
的内角
、
、
的对边分别为
、
、
,
为
内一点,若分别满足下列四个条件:
①
;
②
;
③
;
④
;
则点
分别为
的( )
A.外心、内心、垂心、重心B.内心、外心、垂心、重心
C.垂心、内心、重心、外心D.内心、垂心、外心、重心
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图(1),等腰梯形
,
,
,
,
,
分别是
的两个三等分点,若把等腰梯形沿虚线
、
折起,使得点
和点
重合,记为点
, 如图(2).
![]()
(1)求证:平面
平面
;
(2)求平面
与平面
所成锐二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知四棱锥
的底面是边长为
的菱形,
,点E是棱BC的中点,
,点P在平面ABCD的射影为O,F为棱PA上一点.
![]()
1
求证:平面
平面BCF;
2
若
平面PDE,
,求四棱锥
的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给出以下三个命题:
①若
,则
;
②在
中,若
,则
;
③在一元二次方程
中,若
,则方程有实数根.
其中原命题、逆命题、否命题、逆否命题均为真命题的是________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某市政府为了节约生活用电,计划在本市试行居民生活用电定额管理,即确定一户居民月用电量标准a,用电量不超过a的部分按平价收费,超出a的部分按议价收费
为此,政府调查了100户居民的月平均用电量
单位:度
,以
,
,
,
,
,
分组的频率分布直方图如图所示.
根据频率分布直方图的数据,求直方图中x的值并估计该市每户居民月平均用电量
的值;
用频率估计概率,利用
的结果,假设该市每户居民月平均用电量X服从正态分布![]()
估计该市居民月平均用电量介于
度之间的概率;
利用
的结论,从该市所有居民中随机抽取3户,记月平均用电量介于
度之间的户数为
,求
的分布列及数学期望
.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com