【题目】如图,给出的是计算1+ + +…+ + 的值的一个程序框图,判断框内应填入的条件是( )
A.i<101?
B.i>101?
C.i≤101?
D.i≥101?
科目:高中数学 来源: 题型:
【题目】两千多年前,古希腊毕达哥拉斯学派的数学家曾经在沙滩上研究数学问题.他们在沙滩上画点或用小石子表示数,按照点或小石子能排列的形状对数进行分类.如下图中实心点的个数5,9,14,20,…为梯形数.根据图形的构成,记此数列的第2013项为a2013 , 则a2013﹣5=( )
A.2019×2013
B.2019×2012
C.1006×2013
D.2019×1006
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司计划种植A,B两种中药材,该公司最多能承包50亩的土地,可使用的周转资金不超过54万元,假设药材A售价为0.55万元/吨,产量为4吨/亩,种植成本1.2万元/亩;药材B售价为0.3万元/吨,产量为6吨/亩,种植成本0.9万元/亩时公司的总利润最大,则A,B两种中药材的种植面积应各为多少亩,最大利润为多少万元?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在△ABC中,内角A,B,C所对的边分别为a,b,c,已知向量 , ,且 .
(1)求角B的大小;
(2)若b=2,△ABC的面积为 ,求a+c的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】我国是世界上严重缺水的国家之一,城市缺水问题较为突出.某市为了节约生活用水,计划在本市试行居民生活用水定额管理(即确定一个居民月均用水量标准03.5,用水量不超过a的部分按照平价收费,超过a的部分按照议价收费).为了较为合理地确定出这个标准,通过抽样获得了 100位居民某年的月均用水量(单位:t),制作了频率分布直方图.
(1)由于某种原因频率分布直方图部分数据丢失,请在图中将其补充完整;
(2)用样本估计总体,如果希望80%的居民每月的用水量不超出标准03.5,则月均用水量的最低标准定为多少吨,请说明理由;
(3)从频率分布直方图中估计该100位居民月均用水量的平均数(同一组中的数据用该区间的中点值代表).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知二次函数f(x)=mx2+4x+1,且满足f(﹣1)=f(3).
(1)求函数f(x)的解析式;
(2)若函数f(x)的定义域为(﹣2,2),求f(x)的值域.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com