精英家教网 > 高中数学 > 题目详情

设动点P到点A(-1,0)和B(1,0)的距离分别为d1和d2,且存在常数λ(0<λ<1),使得

(1)证明:动点P的轨迹C为双曲线,并求出C的方程;

(2)过点B作直线双曲线C的右支于M,N两点,试确定λ的范围,使,其中点O为坐标原点.

答案:
解析:

  解法一:(1)在中,

  即

  

  即(常数),

  点的轨迹是以为焦点,实轴长的双曲线.

  方程为:

  (2)设

  ①当垂直于轴时,的方程为在双曲线上.

  即,因为,所以

  ②当不垂直于轴时,设的方程为

  由得:

  

  由题意知:

  所以

  于是:

  因为,且在双曲线右支上,所以

  

  由①②知,

  解法二:(1)同解法一

  (2)设的中点为

  ①当时,

  因为,所以

  ②当时,

  又.所以

  由,得,由第二定义得

  

  所以

  于是由,得

  因为,所以,又

  解得:.由①②知


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网设动点P到点A(-1,0)和B(1,0)的距离分别为d1和d2,∠APB=2θ,且存在常数λ(0<λ<1),使得d1d2sin2θ=λ.
(1)证明:动点P的轨迹C为双曲线,并求出C的方程;
(2)过点B作直线双曲线C的右支于M,N两点,试确定λ的范围,使
OM
ON
=0
,其中点O为坐标原点.

查看答案和解析>>

科目:高中数学 来源: 题型:044

(2007江西,21)设动点P到点A(10)B(10)的距离分别为,∠APB=2θ,且存在常数λ(0<λ<1),使得

(1)证明:动点P的轨迹C为双曲线,并求出C的方程;

(2)过点B作直线交双曲线C的右支于MN两点,试确定λ的范围,使,其中点O为坐标原点.

查看答案和解析>>

科目:高中数学 来源:吉林省长春市十一高2011-2012学年高二下学期期中考试数学理科试题 题型:013

设动点P到点A(-1,0)和B(1,0)的距离分别为d1和d2,∠APB=2,且存在常数λ(0<λ<1),使得.(如图所示)那么点P的轨迹是

[  ]

A.

B.椭圆

C.双曲线

D.抛物线

查看答案和解析>>

科目:高中数学 来源:2007年江西省高考数学试卷(理科)(解析版) 题型:解答题

设动点P到点A(-1,0)和B(1,0)的距离分别为d1和d2,∠APB=2θ,且存在常数λ(0<λ<1),使得d1d2sin2θ=λ.
(1)证明:动点P的轨迹C为双曲线,并求出C的方程;
(2)过点B作直线双曲线C的右支于M,N两点,试确定λ的范围,使,其中点O为坐标原点.

查看答案和解析>>

同步练习册答案