精英家教网 > 高中数学 > 题目详情
12.证明:
(1)${C}_{m+2}^{n}$=${C}_{m}^{n}$+2${C}_{m}^{n-1}$+${C}_{m}^{n-2}$;
(2)${C}_{n+1}^{m}$=${C}_{n}^{m}$+${C}_{n}^{m-1}$.

分析 首先利用组合数公式证明(2),嗯哼利用(2)的结论证明(1).

解答 证明:(2)因为${C}_{n}^{m}$+${C}_{n}^{m-1}$=$\frac{n!}{m!(n-m)!}+\frac{n!}{(m-1)!(n-m+1)!}$=$\frac{n!(n-m+1)+n!m}{m!(n-m+1)!}$=$\frac{n!(n+1)}{m!(n-m+1)!}$=$\frac{(n+1)!}{m!(n-m+1)!}$;
又${C}_{n+1}^{m}$=$\frac{(n+1)!}{m!(n-m+1)!}$,所以${C}_{n+1}^{m}$=${C}_{n}^{m}$+${C}_{n}^{m-1}$成立.
(1)因为${C}_{n+1}^{m}$=${C}_{n}^{m}$+${C}_{n}^{m-1}$,所以${C}_{m}^{n}$+2${C}_{m}^{n-1}$+${C}_{m}^{n-2}$=(${C}_{m}^{n}+{C}_{m}^{n-1}$)+(${C}_{m}^{n-1}+{C}_{m}^{n-2}$)=${C}_{m+1}^{n}+{C}_{m+1}^{n-1}$=${C}_{m+2}^{n}$;所以等式成立.

点评 本题考查了组合数公式以及性质的运用;熟练掌握公式是关键.

练习册系列答案
相关习题

科目:高中数学 来源:2016-2017学年河北邢台市高一上学期月考一数学试卷(解析版) 题型:填空题

已知函数,若均满足不等式,则的最大值为__________.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设函数$f(x)=\left\{{\begin{array}{l}{ln(-x){,_{\;}}x<0}\\{-lnx,{{,}_{\;}}x>0}\end{array}}\right.$若f(m)>f(-m),则实数m的取值范围是(  )
A.(-1,0)∪(0,1)B..(-∞,-1)∪(0,1)C.(-1,0)∪(1,+∞)D.(-1,1]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,F1,F2分别为椭圆C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的左、右焦点,椭圆C上的点到F1点距离的最大值为5,离心率为$\frac{2}{3}$,A,B是椭圆C上位于x轴上方的两点,且直线AF1与直线BF2平行.

(Ⅰ)求椭圆C的方程;
(Ⅱ)若$\overrightarrow{A{F}_{1}}$=2$\overrightarrow{B{F}_{2}}$,求直线AF1的方程;
(Ⅲ)设AF2与BF1的交点为P,求证:|PF1|+|PF2|是定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设F为椭圆E:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的右焦点,点$p(1,\frac{3}{2})$在椭圆E上,直线l0:3x-4y-10=0与以原点为圆心?以椭圆E的长半轴长为半径的圆相切.
(1)求椭圆E的方程;
(2)过点F的直线l与椭圆相交于A,B两点,过点P且平行于AB的直线与椭圆交于另一点Q.问是否存在直线l,使得四边形PABQ的对角线互相平分?若存在,求出l的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知p:“函数f(x)为偶函数”是q:“函数g(f(x))为偶函数”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在△ABC中,角A,B,C的对边分别是a,b,c,若a2-b2=$\sqrt{3}$bc,sinC=2$\sqrt{3}$sinB,则A=(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=$\frac{e^x}{{{x^2}+2x+b}}$的定义域是R,且有极值点.
(Ⅰ)求实数b的取值范围;
(Ⅱ)求证:方程f(x)=$\frac{1}{2}$恰有一个实根.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若“x∈[-2,1]”是“x∈{x|x2-ax-4≤0|≤0}”的充分但不必要条件,则实数a的取值范围是[-3,0]•

查看答案和解析>>

同步练习册答案