精英家教网 > 高中数学 > 题目详情
如图,已知圆外有一点,作圆的切线为切点,过的中点,作割线,交圆于两点,连接并延长,交圆于点,连续交圆于点,若

(1)求证:△∽△
(2)求证:四边形是平行四边形.
(1)由切割线定理,及N是PM的中点,可得PN2=NA•NB,结合∠PNA=∠BNP,可得△PNA∽△BNP,则∠APN=∠PBN,即∠APM=∠PBA;再由MC=BC,可得∠MAC=∠BAC,再由等角的补角相等可得∠MAP=∠PAB,进而得到△APM∽△ABP
(2)由∠ACD=∠PBN,可得∠PCD=∠CPM,即PM∥CD;由△APM∽△ABP,PM是圆O的切线,可证得∠MCP=∠DPC,即MC∥PD;再由平行四边形的判定定理得到四边形PMCD是平行四边形.

试题分析:证明:(Ⅰ)∵是圆的切线,是圆的割线,的中点,证明:(Ⅰ)∵PM是圆O的切线,NAB是圆O的割线,N是PM的中点,∴MN2=PN2=NA•NB,又∵∠PNA=∠BNP,
∴△PNA∽△BNP,∴∠APN=∠PBN,即∠APM=∠PBA,.∵MC=BC,
∴∠MAC=∠BAC,∴∠MAP=∠PAB,∴△APM∽△ABP…(5分)
(Ⅱ)∵∠ACD=∠PBN,
∴∠ACD=∠PBN=∠APN,即∠PCD=∠CPM,
∴PM∥CD.∵△APM∽△ABP,∴∠PMA=∠BPA∵PM是圆O的切线,∴∠PMA=∠MCP,∴∠PMA=∠BPA=∠MCP,即∠MCP=∠DPC,∴MC∥PD,∴四边形PMCD是平行四边形.…(10分)
点评:本题考查的知识点是切割线定理,圆周角定理,三角形相似的判定与性质,平行四边形的判定,熟练掌握平面几何的基本定理是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,的一条切线,切点为都是的割线,已知

(1)证明:
(2)证明:

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,四边形是边长为的正方形,以为圆心,为半径的圆弧与以为直径的圆交于点,连接并延长.则线段的长为       

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知与圆相切于点,经过点的割线交圆于点,的平分线分别交于点.

(1)证明:
(2)若,求的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图, ⊙O为的外接圆,直线为⊙O的切线,切点为,直线,交,交⊙O于上一点,且.

求证:(Ⅰ)
(Ⅱ)点共圆.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

A.对任意恒成立,则满足________.
B.在极坐标系中,点到直线的距离是_______.
C.如图,点P在圆O直径AB的延长线上,且PB=OB=2, PC切圆O于点C,CD⊥AB于点D,则CD=________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图的三个顶点都在⊙O上,的平分线与BC边和⊙O分别交于点D、E.

(1)指出图中相似的三角形,并说明理由;
(2)若,求的长.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

(几何证明选讲)如图,割线经过圆心O,绕点逆时针旋120°到,连交圆于点,则        。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,在直角梯形ABCD中,, 动点P在以点C为圆心,且与直线BD相切的圆内运动,设,则α+β的取值范围是   ( )
A.B.
C.D.

查看答案和解析>>

同步练习册答案