【题目】如图,在三棱柱
中,侧面
是菱形,
,
是棱
的中点,
,
在线段
上,且
.
![]()
(1)证明:
面
;
(2)若
,面
面
,求二面角
的余弦值.
【答案】(1)详见解析;(2)
.
【解析】
(1)连接
交
于点
,连接
,利用三角形相似证明
,然后证明
面
.
(2)过
作
于
,以
为原点,
,
,
分别为
轴,
轴,
轴的正方向建立空间直角坐标,
不妨设
,求出面
的一个法向量,面
的一个法向量,然后利用空间向量的数量积求解即可.
解:(1)连接
交
于点
,连接
.
因为
,所以
,又因为
,所以
,所以
,
又
面
,
面
,所以
面
.
(2)过
作
于
,因为
,所以
是线段
的中点.
因为面
面
,面
面
,所以
面
.连接
,
因为
是等边三角形,
是线段
的中点,所以
.
如图以
为原点,
,
,
分别为
轴,
轴,
轴的正方向建立空间直角坐标,
不妨设
,则
,
,
,
,
,
由
,得
,
的中点
,
,
.
设面
的一个法向量为
,则
,即
,
得方程的一组解为
,即
.
面
的一个法向量为
,则
,
所以二面角
的余弦值为
.
![]()
科目:高中数学 来源: 题型:
【题目】某大学开学期间,该大学附近一家快餐店招聘外卖骑手,该快餐店提供了两种日工资结算方案:方案
规定每日底薪100元,外卖业务每完成一单提成2元;方案
规定每日底薪150元,外卖业务的前54单没有提成,从第55单开始,每完成一单提成5元.该快餐店记录了每天骑手的人均业务量,现随机抽取100天的数据,将样本数据分为
七组,整理得到如图所示的频率分布直方图.
![]()
(1)随机选取一天,估计这一天该快餐店的骑手的人均日外卖业务量不少于65单的概率;
(2)从以往统计数据看,新聘骑手选择日工资方案
的概率为
,选择方案
的概率为
.若甲、乙、丙、丁四名骑手分别到该快餐店应聘,四人选择日工资方案相互独立,求至少有两名骑手选择方案
的概率,
(3)若仅从人日均收入的角度考虑,请你为新聘骑手做出日工资方案的选择,并说明理由.(同组中的每个数据用该组区间的中点值代替)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】生男生女都一样,女儿也是传后人.由于某些地区仍然存在封建传统思想,头胎的男女情况可能会影响生二孩的意愿,现随机抽取某地200户家庭进行调查统计.这200户家庭中,头胎为女孩的频率为0.5,生二孩的频率为0.525,其中头胎生女孩且生二孩的家庭数为60.
(1)完成下列
列联表,并判断能否有95%的把握认为是否生二孩与头胎的男女情况有关;
生二孩 | 不生二孩 | 合计 | |
头胎为女孩 | 60 | ||
头胎为男孩 | |||
合计 | 200 |
(2)在抽取的200户家庭的样本中,按照分层抽样的方法在生二孩的家庭中抽取了7户,进一步了解情况,在抽取的7户中再随机抽取4户,求抽到的头胎是女孩的家庭户数
的分布列及数学期望.
附:
| 0.15 | 0.05 | 0.01 | 0.001 |
| 2.072 | 3.841 | 6.635 | 10.828 |
(其中
).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】生男生女都一样,女儿也是传后人.由于某些地区仍然存在封建传统思想,头胎的男女情况可能会影响生二孩的意愿,现随机抽取某地200户家庭进行调查统计.这200户家庭中,头胎为女孩的频率为0.5,生二孩的频率为0.525,其中头胎生女孩且生二孩的家庭数为60.
(1)完成下列
列联表,并判断能否有95%的把握认为是否生二孩与头胎的男女情况有关;
生二孩 | 不生二孩 | 合计 | |
头胎为女孩 | 60 | ||
头胎为男孩 | |||
合计 | 200 |
(2)在抽取的200户家庭的样本中,按照分层抽样的方法在生二孩的家庭中抽取了7户,进一步了解情况,在抽取的7户中再随机抽取4户,求抽到的头胎是女孩的家庭户数
的分布列及数学期望.
附:
| 0.15 | 0.05 | 0.01 | 0.001 |
| 2.072 | 3.841 | 6.635 | 10.828 |
(其中
).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,曲线
过点
,其参数方程为
(
为参数,
),以
为极点,
轴非负半轴为极轴,建立极坐标系,曲线
的极坐标方程为
.
(1)求曲线
的普通方程和曲线
的直角坐标方程;
(2)求已知曲线
和曲线
交于
两点,且
,求实数
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的中心为原点
,焦点为
,离心率为
,不与坐标轴垂直的直线
与椭圆
交于
,
两点.
(1)若
为线段
的中点,求直线
的方程.
(2)若点
是直线
上一点,点
在椭圆
上,且满足
,设直线
与直线
的斜率分别为
,
,问
是否为定值?若是,请求出
的值;若不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中
中,曲线
的参数方程为
(
为参数,
).以坐标原点为极点,
轴正半轴为极轴建立极坐标系,已知直线
的极坐标方程为
.
(1)设
是曲线
上的一个动点,当
时,求点
到直线
的距离的最大值;
(2)若曲线
上所有的点均在直线
的右下方,求
的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com