【题目】设
,函数
.
(1)求函数
的单调增区间;
(2)试讨论函数
的零点个数.
【答案】(1)见解析(2)2
【解析】
(1)通过导函数的正负来判断
的单调增区间(2)讨论参数
,利用求导来判断函数的单调性,然后再通过最小值和
的比较来判断零点.
(1)若
,
,函数定义域为![]()
当
时,
单调递减;当
时,
单调递增.
若
,
,
,根据函数定义域知
.
若
,
,则有
,此时
单调递增.
若
,当
时,有
,此时
单调递减;
当
时,有
,此时
单调递增.
综上,若
,
单调递增区间为
,
若
,
单调递增区间为
,
若
,
单调递增区间为
.
(2)若
,
有最小值
,此时
有一个零点.
若
,
.![]()
又因为
单调递增,所以
只有一个零点.
若
,
是
的最小值点,![]()
当
时,
,
不存在零点.
当
时,
,
有一个零点.
当
时,
,而
.并且当
时,有
,此时
单调递减,故在
必存在一个零点.
而
, 当
时,有
,此时
单调递增.故在
必存在一个零点.
综上,
有两个零点.
科目:高中数学 来源: 题型:
【题目】超级病菌是一种耐药性细菌,产生超级细菌的主要原因是用于抵抗细菌侵蚀的药物越来越多,但是由于滥用抗生素的现象不断的发生,很多致病菌也对相应的抗生素产生了耐药性,更可怕的是,抗生素药物对它起不到什么作用,病人会因为感染而引起可怕的炎症,高烧、痉挛、昏迷直到最后死亡.某药物研究所为筛查某种超级细菌,需要检验血液是否为阳性,现有n(
)份血液样本,每个样本取到的可能性均等,有以下两种检验方式:
(1)逐份检验,则需要检验n次;
(2)混合检验,将其中k(
且
)份血液样本分别取样混合在一起检验,若检验结果为阴性,这k份的血液全为阴性,因而这k份血液样本只要检验一次就够了,如果检验结果为阳性,为了明确这k份血液究竟哪几份为阳性,就要对这k份再逐份检验,此时这k份血液的检验次数总共为
次,假设在接受检验的血液样本中,每份样本的检验结果是阳性还是阴性都是独立的,且每份样本是阳性结果的概率为p(
).
(1)假设有5份血液样本,其中只有2份样本为阳性,若采用逐份检验方式,求恰好经过2次检验就能把阳性样本全部检验出来的概率;
(2)现取其中k(
且
)份血液样本,记采用逐份检验方式,样本需要检验的总次数为
,采用混合检验方式,样本需要检验的总次数为
.
(i)试运用概率统计的知识,若
,试求p关于k的函数关系式
;
(ii)若
,采用混合检验方式可以使得样本需要检验的总次数的期望值比逐份检验的总次数期望值更少,求k的最大值.
参考数据:
,
,
,
,![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,以
为极点,
轴的正半轴为极轴建立极坐标系,已知曲线
的极坐标方程为
,曲线
的极坐标方程为
,曲线
的极坐标方程为
.
(1)求
与
的直角坐标方程;
(2)若
与
的交于
点,
与
交于
、
两点,求
的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
,函数
在点
处的切线斜率为0.
(1)试用含有
的式子表示
,并讨论
的单调性;
(2)对于函数
图象上的不同两点
,
,如果在函数
图象上存在点
,使得在点
处的切线
,则称
存在“跟随切线”.特别地,当
时,又称
存在“中值跟随切线”.试问:函数
上是否存在两点
使得它存在“中值跟随切线”,若存在,求出
的坐标,若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知动点
到定点
的距离比到
轴的距离多
.
(1)求动点
的轨迹
的方程;
(2)设
,
是轨迹
在
上异于原点
的两个不同点,直线
和
的倾斜角分别为
和
,当
,
变化且
时,证明:直线
恒过定点,并求出该定点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2019年安庆市在大力推进城市环境、人文精神建设的过程中,居民生活垃圾分类逐渐形成意识.有关部门为宣传垃圾分类知识,面向该市市民进行了一次“垃圾分类知识"的网络问卷调查,每位市民仅有一次参与机会,通过抽样,得到参与问卷调查中的1000人的得分数据,其频率分布直方图如图:
![]()
(1)由频率分布直方图可以认为,此次问卷调查的得分Z服从正态分布
,
近似为这1000人得分的平均值(同一组数据用该区间的中点值作代表),利用该正态分布,求P(
);
(2)在(1)的条件下,有关部门为此次参加问卷调查的市民制定如下奖励方案:
(i)得分不低于
可获赠2次随机话费,得分低于
则只有1次:
(ii)每次赠送的随机话费和对应概率如下:
赠送话费(单位:元) | 10 | 20 |
概率 |
|
|
现有一位市民要参加此次问卷调查,记X(单位:元)为该市民参加问卷调查获赠的话费,求X的分布列.附:
,若
,则
,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】秉承“绿水青山就是金山银山”的发展理念,某市环保部门通过制定评分标准,先对本市的企业进行评估,评出四个等级,并根据等级给予相应的奖惩,如下表所示:
评估得分 |
|
|
|
|
评定等级 | 不合格 | 合格 | 良好 | 优秀 |
奖励(万元) |
|
|
|
|
环保部门对企业评估完成后,随机抽取了
家企业的评估得分(
分)为样本,得到如下频率分布表:
评估得分 |
|
|
|
|
|
|
频率 |
|
|
|
|
|
|
其中
、
表示模糊不清的两个数字,但知道样本评估得分的平均数是
.
(1)现从样本外的数百个企业评估得分中随机抽取
个,若以样本中频率为概率,求该家企业的奖励不少于
万元的概率;
(2)现从样本“不合格”、“合格”、“良好”三个等级中,按分层抽样的方法抽取
家企业,再从这
家企业随机抽取
家,求这两家企业所获奖励之和不少于
万元的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com