精英家教网 > 高中数学 > 题目详情
3.已知椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的左、右焦点分别为${F_1},{F_2},{a^2}+{b^2}=4$,短轴端点B与两焦点F1,F2构成的三角形面积最大时,椭圆的短半轴长为(  )
A.1B.$\frac{1}{2}$C.$\frac{{\sqrt{2}}}{2}$D.$\frac{{\sqrt{3}}}{2}$

分析 a2+b2=4,即2b2+c2=4,利用基本不等式的性质可得bc≤$\sqrt{2}$,进而得出答案.

解答 解:∵a2+b2=4,∴2b2+c2=4≥2$\sqrt{2{b}^{2}•{c}^{2}}$,化为:bc≤$\sqrt{2}$,当且仅当c=$\sqrt{2}$b=$\sqrt{2}$时取等号.
∴${S}_{△{F}_{1}{F}_{2}B}$=$\frac{1}{2}×2c×b$=bc≤$\sqrt{2}$,此时取等号时,b=1,
故选:A.

点评 本题考查了椭圆的标准方程及其性质、基本不等式的性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.复平面内若复数z=m2(1+i)-m(1+i)-6i所对应的点在第二象限,则实数m的取值范围是(  )
A.(0,3)B.(-2,0)C.D.(-∞,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知输入的x=11,执行如图所示的程序框图,则输出的x的值为(  )
A.23B.47C.95D.191

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.如图程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入的a,b分别为98,63,则输出的a为(  )
A.0B.7C.14D.28

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)满足f(x+1)=lg(2+x)-lg(-x).
(1)求函数f(x)的解析式及定义域;
(2)解不等式f(x)<1;
(3)判断并证明f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.在三棱锥P-ABC中,PA⊥平面ABC,PA=2,AB=AC=3,又$cos∠BAC=-\frac{3}{5}$,则该三棱锥外接球的表面积为49π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知p:不等式x2+mx+1<0的解集为空集,q:函数y=4x2+4(m-1)x+3无极值,若“p或q”为真,“p且q”为假,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知函数f(x)=$\frac{{x}^{2}}{{e}^{x}}$,若对任意的x1,x2∈[-1,2],恒有af(1)≥|f(x1)-f(x2)|成立,则实数a的取值范围是[e2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.某大学生从全校学生中随机选取100名统计他们的鞋码大小,得到如下数据:
 鞋码 35 36 37 38 39 40 4142  4344  合计
 男生-- 3 6 8 11 12 6 7 2 55
 女生 4 6 12 9 9 2 2-- 1 45
以各性别各鞋码出现的频率为概率.
(1)从该校随机挑选一名学生,求他(她)的鞋码为奇数的概率;
(2)为了解该校学生考试作弊的情况,从该校随机挑选120名学生进行抽样调查.每位学生从装有除颜色外无差别的4个红球和6个白球的口袋中,随机摸出两个球,若同色,则如实回答其鞋码是否为奇数;若不同色,则如实回答是否曾在考试中作弊.这里的回答,是指在纸上写下“是”或“否”.若调查人员回收到32张“是”的小纸条,试估计该校学生在考试中曾有作弊行为的概率.

查看答案和解析>>

同步练习册答案