精英家教网 > 高中数学 > 题目详情

【题目】已知函数y=f(x)是定义在R上的奇函数,当x<0时,f(x)=x+2,那么不等式2f(x)﹣1<0的解集是

【答案】
【解析】解:当x>0时,﹣x<0,
∴f(﹣x)=﹣x+2,
∵y=f(x)是奇函数,
∴f(x)=﹣f(﹣x)=x﹣2.
∵y=f(x)是定义在R上的奇函数,
∴f(0)=0.
∴f(x)= ,(1)当x>0时,2(x﹣2)﹣1<0,
解得0<x< .(2)当x=0时,﹣1<0,恒成立.(3)当x<0时,2(x+2)﹣1<0,
解得x<﹣
综上所述:2f(x)﹣1<0的解集是
所以答案是
【考点精析】本题主要考查了奇偶性与单调性的综合的相关知识点,需要掌握奇函数在关于原点对称的区间上有相同的单调性;偶函数在关于原点对称的区间上有相反的单调性才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= 是奇函数.
(1)求实数a的值;
(2)判断函数f(x)的单调性,并给以证明;
(3)求函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是直三棱柱,底面是等腰直角三角形,且,直三棱柱的高等于4,线段的中点为,线段的中点为,线段的中点为

(1)求异面直线所成角的大小;

(2)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(I)求函数的对称轴方程;

(II)将函数的图象上各点的纵坐标保持不变,横坐标伸长为原来的2倍,然后再向左平移个单位,得到函数的图象.若分别是△ABC三个内角ABC的对边,a=2,c=4,且,求b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了展示中华汉字的无穷魅力,传递传统文化,提高学习热情,某校开展《中国汉字听写大会》的活动.为响应学校号召,2(9)班组建了兴趣班,根据甲、乙两人近期8次成绩画出茎叶图,如图所示(把频率当作概率).

(1)求甲、乙两人成绩的平均数和中位数;

(2)现要从甲、乙两人中选派一人参加比赛,从统计学的角度,你认为派哪位学生参加比较合适?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】分层抽样是将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,组成一个样本的抽样方法;在《九章算术》第三章“衰分”中有如下问题:“今有甲持钱五百六十,乙持钱三百五十,丙持钱一百八十,凡三人俱出关,关税百钱.欲以钱多少衰出之,问各几何?”其译文为:今有甲持560钱,乙持350钱,丙持180钱,甲、乙、丙三人一起出关,关税共100钱,要按照各人带钱多少的比例进行交税,问三人各应付多少税?则下列说法错误的是( )

A. 甲应付 B. 乙应付

C. 丙应付 D. 三者中甲付的钱最多,丙付的钱最少

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=log22x﹣mlog2x+2,其中m∈R.
(1)当m=3时,求方程f(x)=0的解;
(2)当x∈[1,2]时,求f(x)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆: 上的任一点到焦点的距离最大值为3,离心率为

(1)求椭圆的标准方程;

(2)若为曲线上两点, 为坐标原点,直线 的斜率分别为,求直线被圆截得弦长的最大值及此时直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,江的两岸可近似地看出两条平行的直线,江岸的一侧有 两个蔬菜基地,江岸的另一侧点处有一个超市.已知中任意两点间的距离为千米,超市欲在之间建一个运输中转站 两处的蔬菜运抵处后,再统一经过货轮运抵处,由于 两处蔬菜的差异,这两处的运输费用也不同.如果从处出发的运输费为每千米元.从处出发的运输费为每千米元,货轮的运输费为每千米元.

(1)设,试将运输总费用(单位:元)表示为的函数,并写出自变量的取值范围;

(2)问中转站建在何处时,运输总费用最小?并求出最小值.

查看答案和解析>>

同步练习册答案