精英家教网 > 高中数学 > 题目详情
(文科做)已知函数(bc为常数).
(1) 若处取得极值,试求的值;
(2) 若上单调递增,且在上单调递减,又满足,求证:
(1)
(2)证明见解析。
(1)
据题意知,1和3是方程的两根,
,即. 
(2)解:由题意知,当时,;当时,.
是方程的两根
                                                                      
.
,∴,∴
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本题满分14分)设函数(1)求函数的单调区间;(2)求在[—1,2]上的最小值;(3)当时,用数学归纳法证明:

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=alnxbx,且f(1)=-1,f′(1)=0,
⑴求f(x);
⑵求f(x)的最大值;
⑶若x>0,y>0,证明:lnx+lny.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

对于函数
(1)若处取得极值,且的图像上每一点的切线的斜率均不超过试求实数的取值范围;
(2)若为实数集R上的单调函数,设点P的坐标为,试求出点P的轨迹所形成的图形的面积S。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

函数)的图象关于原点对称,分别为函数的极大值点和极小值点,且|AB|=2,.
(Ⅰ)求的值;
(Ⅱ)求函数的解析式;
(Ⅲ)若恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数g(x)= (a,b∈R),在其图象上一点P(x,y)处的切线的斜率记为f(x).
(1)若方程f(x)=0有两个实根分别为一2和4,求f(x)的表达式;
(2)若g(x)在区间[一1,3]上是单调递减函数,求a2+b2的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)设,当m≥时,求g(x)在[]上的最大值;
(2)若上是单调减函数,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)已知函数
(I)求函数的单调区间;  (II)当在区间[—1,2]上是单调函数,求a的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知ab为实数,且bae,其中e为自然对数的底,
求证: abba.

查看答案和解析>>

同步练习册答案