精英家教网 > 高中数学 > 题目详情
(本题满分14分)设函数(1)求函数的单调区间;(2)求在[—1,2]上的最小值;(3)当时,用数学归纳法证明:
(Ⅰ)增区间为 …  (Ⅱ)  见解析
(1)…………2分



—2
(-2,0)
0
(0,1)
1



0
+
0

0
+


极小

极大

极小

函数的增区间为
…………5分
(2)当

所以 ………………8分
(3)设

; ………………10分

即当时,不等式成立。
所以当时, ………………14分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

是函数的两个极值点,且
(Ⅰ)求的取值范围;
(Ⅱ)求证:.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数的导函数满足常数为方程
的实数根
(1)若函数的定义域为I,对任意 存在使等式成立。  求证:方程不存在异于的实数根。
(2)求证:当时,总有成立。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(文科做)已知函数(bc为常数).
(1) 若处取得极值,试求的值;
(2) 若上单调递增,且在上单调递减,又满足,求证:

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)设函数(1)求函数;?(2)若存在常数k和b,使得函数对其定义域内的任意实数分别满足则称直线的“隔离直线”.试问:函数是否存在“隔离直线”?若存在,求出“隔离直线”方程,不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

若函数为奇函数,且过点,函数
(1)求函数的解析式并求其定义域;
(2)求函数的单调区间;
(3)若当时不等式恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)求函数的单调区间;
(2)曲线在点处的切线都与轴垂直,若曲线在区间上与轴相交,求实数的取值范围;

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数的导数是(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)求
(2)令
求证:

查看答案和解析>>

同步练习册答案