精英家教网 > 高中数学 > 题目详情

已知实数满足,则函数的取值范围是      .

 

【答案】

(2,5)

【解析】

试题分析:作出不等式组表示的区域如图所示,设P(x,y),显然.

从图可知,当点P在点C,D时,取最大值5;当点P在点A时,取最小值2.但要区域中应去掉A、C、D三点,所以其范围为(2,5).

考点:线性规划.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)的定义域为[-2,+∞),部分函数值如下表,f'(x)为f(x)的导函数,f'(x)的图象如图所示.如果实数a满足f(a)<1,则a的取值范围是(  )
x -2 0 4
 f(x) 1 -1 1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=x2-2mx+1,若对于[0,1]上的任意三个实数a,b,c,函数值f(a),f(b),f(c)都能构成一个三角形的三边长,则满足条件的m的值可以是
(0<m<
2
2
内的任一实数)
(0<m<
2
2
内的任一实数)
.(写出一个即可)

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在D上的函数f(x),如果满足:对任意x∈D,存在常数M≥0,都有|f(x)|≤M 成立,则称f(x)是D上的有界函数,其中M称为函f(x)的一个上界.
已知函数f(x)=1+a(
1
2
)
x
+(
1
4
)
x
,g(x)=log
1
2
1-ax
x-1

(1)若函数g(x)为奇函数,求实数a的值;
(2)在(1)的条件下,求函数g(x),在区间[
5
3
,3]上的所有上界构成的集合;
(3)若函数g(x)在[0,+∞)上是以3为上界的有界函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数,若对于上的任意三个实数,函数值都能构成一个三角形的三边长,则满足条件的的值可以是        。(写出一个即可)

 

查看答案和解析>>

科目:高中数学 来源:2014届湖南省高一12月月考数学 题型:解答题

(本题满分14分)定义在D上的函数,如果满足;对任意,存在常数,都有成立,则称是D上的有界函数,其中M称为函数的上界。

已知函数

(1)当时,求函数上的值域,并判断函数上是否为有界函数,请说明理由;

(2)若函数上是以3为上界函数值,求实数的取值范围;

(3)若,求函数上的上界T的取值范围。

 

查看答案和解析>>

同步练习册答案