精英家教网 > 高中数学 > 题目详情
16.已知△ABC的内角A,B,C的对边分别为a,b,c,且2csinBcosA-bsinC=0.
(Ⅰ)求角A;
(Ⅱ)若△ABC的面积为$\sqrt{3}$,b+c=5,求a.

分析 (Ⅰ)由2csinBcosA-bsinC=0及正弦定理求得2cosA=1,即$cosA=\frac{1}{2}$,从而求得A的值.
(Ⅱ)由${S_{△ABC}}=\frac{1}{2}bcsinA=\sqrt{3}$,求得bc=4,再由余弦定理求得a2的值,可得a的值.

解答 解:(Ⅰ)在△ABC中,由2csinBcosA-bsinC=0及正弦定理得:2sinCsinBcosA-sinBsinC=0,
∵0<B<π,0<C<π,sinBsinC≠0,
∴2cosA=1,即$cosA=\frac{1}{2}$.
又0<A<π,$A=\frac{π}{3}$.  
(Ⅱ)${S_{△ABC}}=\frac{1}{2}bcsinA=\sqrt{3}$,又∵$A=\frac{π}{3}$,∴$sinA=\frac{{\sqrt{3}}}{2}$,∴bc=4,
由余弦定理得a2=b2+c2-2bccosA=(b+c)2-3bc=25-12=13,
∴$a=\sqrt{13}$.

点评 本题主要考查正弦定理、余弦定理的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.已知数列{an}满足:2an=an+1+an-1(n≥2,n∈N*),且a1>0,a1、3、a3依次成等比数列,则数列{an}前四项和的最小值为6$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.过点A(-1,1),B(1,3)且圆心在x轴上的圆的方程为(  )
A.(x+2)2+y2=10B.(x-2)2+y2=10C.x2+(y-2)2=2D.x2+(y+2)2=2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知Sn是等差数列{an}的前n项和,且a2=2,S5=15.
(Ⅰ)求通项公式an
(Ⅱ)若数列{bn}满足bn=2an-an,求{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.把函数f(x)=cos(2x+φ)的图象向左平移$\frac{π}{6}$个单位后,所得图象关于y轴对称,则φ可以为(  )
A.$-\frac{π}{6}$B.$-\frac{π}{3}$C.$\frac{π}{6}$D.$\frac{π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.等差数列{an}的前n项和为Sn,且S5=25,S6=36,则an=2n-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.如图所示,在复平面内,复数z1和z2对应的点分别是A和B,则复数z1•z2对应的点在第四象限.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=ex+ax+b(a≠0,b≠0).
(Ⅰ)若函数f(x)的图象在点(0,f(0))处的切线方程为y=2,求f(x)在区间[-2,1]上的最值;
(Ⅱ)若a=-b,试讨论函数f(x)在区间(1,+∞)上零点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=$\sqrt{3}$sin(ωx+φ)(ω>0,-$\frac{π}{2}$≤φ<$\frac{π}{2}$),f(0)=-$\frac{{\sqrt{3}}}{2}$,且函数f(x)图象上的任意两条对称轴之间距离的最小值是$\frac{π}{2}$.
(I)求函数f(x)的解析式;
(II)若f($\frac{α}{2}$)=$\frac{\sqrt{3}}{4}$($\frac{π}{6}$<α<$\frac{2π}{3}$),求cos(α+$\frac{3π}{2}$)的值.

查看答案和解析>>

同步练习册答案