精英家教网 > 高中数学 > 题目详情
8.如图所示,在复平面内,复数z1和z2对应的点分别是A和B,则复数z1•z2对应的点在第四象限.

分析 由图可知:z1=-2-i,z2=i,则z1•z2=1-2i,求出在复平面内,复数z1•z2对应的点的坐标,则答案可求.

解答 解:由图可知:z1=-2-i,z2=i,
则z1•z2=i(-2-i)=1-2i,
在复平面内,复数z1•z2对应的点的坐标为:(1,-2),位于第四象限.
故答案为:四.

点评 本题考查了复数代数形式的乘除运算,考查了复数的代数表示法及其几何意义,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.设函数f(x)=ex(x3-3x+2-c)+x(x≥-2),若不等式f(x)≥0恒成立,则实数c的最大值是-2e2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.把函数f(x)=sin(2x+φ)的图象向左平移$\frac{π}{6}$个单位后,所得图象关于y轴对称,则φ可以为(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$-\frac{π}{6}$D.$-\frac{π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知△ABC的内角A,B,C的对边分别为a,b,c,且2csinBcosA-bsinC=0.
(Ⅰ)求角A;
(Ⅱ)若△ABC的面积为$\sqrt{3}$,b+c=5,求a.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知数列{an}满足(an+1-1)(an-1)=$\frac{1}{2}$(an-an+1),a1=2,若bn=$\frac{1}{{a}_{n}-1}$.
(Ⅰ)证明:数列{bn}是等差数列;
(Ⅱ)令cn=$\sqrt{\frac{2}{{b}_{n}+1}}$,{cn}的前n项和为Tn,用数学归纳法证明Tn≥$\sqrt{n}$(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.一条光线从点(-2,3)射出,经x轴反射后与圆(x-3)2+(y-2)2=1相切,则反射光线所在直线的斜率为(  )
A.$\frac{6}{5}$或$\frac{5}{6}$B.$\frac{5}{4}$或$\frac{4}{5}$C.$\frac{3}{2}$或$\frac{2}{3}$D.$\frac{4}{3}$或$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.在6张奖券中有一、二、三等奖各1张,其余3张无奖,将6张奖券分配给3个人,每人2张,则不同的获奖情况有(  )
A.30种B.24种C.15种D.12种

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.小赵,小钱,小孙,小李四位同学被问到谁去过长城时,
小赵说:我没去过;
小钱说:小李去过;
小孙说;小钱去过;
小李说:我没去过.
假定四人中只有一人说的是假话,由此可判断一定去过长城的是小钱.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知复数z满足|z-i|+|z+i|=3(i是虚数单位),若在复平面内复数z对应的点为Z,则点Z的轨迹为(  )
A.直线B.双曲线C.抛物线D.椭圆

查看答案和解析>>

同步练习册答案