| A. | A=3,T=$\frac{4π}{3}$,φ=-$\frac{π}{6}$ | B. | A=1,T=$\frac{4π}{3}$,φ=-$\frac{3π}{4}$ | ||
| C. | A=1,T=$\frac{4π}{3}$,φ=-$\frac{3π}{4}$ | D. | A=1,T=$\frac{4π}{3}$,φ=-$\frac{π}{6}$ |
分析 根据相邻最低与最高点的横坐标的差值是T的一半,求出T,再根据T=$\frac{2π}{ω}$求出ω,再根据最高点与最低点的纵坐标的差值是振幅的两倍,求出振幅,最后代入点($\frac{π}{6}$,1)求出φ即可得解.
解答 解:由图知周期T=$\frac{4}{3}$π,A=1,
又因为T=$\frac{2π}{ω}$,知ω=$\frac{3}{2}$;
再将点($\frac{π}{6}$,1)代入y=Asin(ωx+φ)+2,
计算求出φ=-$\frac{3}{4}$π,
故选:B.
点评 本题主要考查了由y=Asin(ωx+φ)的部分图象确定其解析式,考查了数形结合思想的应用,此题容易对振幅和初相产生错误,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | 10000001110(2) | B. | 10000011110(2) | C. | 100000011101(2) | D. | 10000001100(2) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | $\sqrt{3}$ | C. | $\sqrt{2}$ | D. | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3}{4}$ | B. | $\frac{4}{3}$ | C. | $-\frac{3}{4}$ | D. | $-\frac{4}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | A∪B | B. | A∩B | C. | ∁UA∩∁UB | D. | ∁UA∪∁UB |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 若m∥α,n∥α,则m∥n | B. | 若m⊥α,α⊥β,则m∥β | C. | 若m∥α,α⊥β,则m⊥β | D. | 若m⊥α,α∥β,则m⊥β |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com