精英家教网 > 高中数学 > 题目详情
1.已知全集U={1,2,3,4,5,6,7,8},A={3,4,5},B={1,3,6},则集合{1,2,4,5,6,7,8}是(  )
A.A∪BB.A∩BC.UA∩∁UBD.UA∪∁UB

分析 根据集合的基本运算即可求A∪B,A∩B,(∁UA)∩(∁UB),(∁UA)∪(∁UB);

解答 解:由题意:全集U={1,2,3,4,5,6,7,8},A={3,4,5},B={1,3,6},
有:∁UA={1,2,6,7,8},∁UB={2,4,5,7,8}
则:A∪B={1,3,4,5,6}
A∩B={3}
(∁UA)∩(∁UB)={2,7,8}
(∁UA)∪(∁UB)={1,2,4,5,6,7,8}.
故选D

点评 本题主要考查集合的基本运算,比较基础

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.(x+$\frac{1}{x}$+1)4展开式中常数项为(  )
A.18B.19C.20D.21

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.如图是函数y=Asin(ωx+φ)+2(A>0,ω>0,|φ|<π)的图象的一部分,则它的振幅、周期、初相分别是(  )
A.A=3,T=$\frac{4π}{3}$,φ=-$\frac{π}{6}$B.A=1,T=$\frac{4π}{3}$,φ=-$\frac{3π}{4}$
C.A=1,T=$\frac{4π}{3}$,φ=-$\frac{3π}{4}$D.A=1,T=$\frac{4π}{3}$,φ=-$\frac{π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知O,A,B是平面上不共线的三点,直线AB上有一点C,满足2$\overrightarrow{AC}$+$\overrightarrow{CB}$=$\overrightarrow{0}$,
(1)用$\overrightarrow{OA}$,$\overrightarrow{OB}$表示$\overrightarrow{OC}$;
(2)若点D是OB的中点,用向量方法证明四边形OCAD是梯形.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在△ABC中,内角A,B,C的对边分别为a,b,c,且bsinA=$\sqrt{3}$acosB.
(1)求角B的大小;
(2)若a=2,△ABC的面积为$\sqrt{3}$,求b,c.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.直线l经过点P(5,5),其斜率为k,直线l与圆x2+y2=25相交,交点分别为A,B.
(1)若AB=4$\sqrt{5}$,求k的值;
(2)若AB<2$\sqrt{7}$,求k的取值范围;
(3)若OA⊥OB(O为坐标原点),求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.设x、y满足不等式组$\left\{\begin{array}{l}{x-y+1≥0}\\{x+y-1≥0}\\{x≤2}\end{array}\right.$,则x2+y2的最小值为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.f(x)=x2+lnx,则f(x)在x=1处的切线方程为3x-y-2=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.根据下列条件确定△ABC有两个解的是(  )
A.a=18,B=30°,A=120°B.a=60,c=48,C=120°
C.a=3,b=6,A=30°D.a=14,b=15,A=45°

查看答案和解析>>

同步练习册答案