精英家教网 > 高中数学 > 题目详情
11.根据下列条件确定△ABC有两个解的是(  )
A.a=18,B=30°,A=120°B.a=60,c=48,C=120°
C.a=3,b=6,A=30°D.a=14,b=15,A=45°

分析 利用正弦定理:△ABC有两个解,那么存在bsinA<a≤b关系.对下列各项进行计算即可.

解答 解:对于A:a=18,B=30°,A=120°,由正弦定理得b=6$\sqrt{3}$,∵a>b,∴只有一个解.
对于B:a=60,c=48,C=120°,∵asinc>a,∴无解.
对于C:a=3,b=6,A=30°,∵bsinA=a,∴只有一个解.
对于D:a=14,b=15,A=45°,bsinA<a<b,∴两个解.
故选:D.

点评 本题考查了正弦定理的运用能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.已知全集U={1,2,3,4,5,6,7,8},A={3,4,5},B={1,3,6},则集合{1,2,4,5,6,7,8}是(  )
A.A∪BB.A∩BC.UA∩∁UBD.UA∪∁UB

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设m,n是不同的直线,α,β是不同的平面,有以下四个命题(  )
A.若m∥α,n∥α,则m∥nB.若m⊥α,α⊥β,则m∥βC.若m∥α,α⊥β,则m⊥βD.若m⊥α,α∥β,则m⊥β

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.某公司在甲乙两地同时销售一种汽车,销售x辆该汽车的利润(单位:万元)分别为L1=-x2+23x和L2=2x.若该公司在两地共销售15辆,则能获得的最大利润为(  )
A.138万元B.134万元C.140万元D.140.25万元

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设 a=log23,b=21.2,2,c=0.72.9,则(  )
A.b<a<cB.a<c<bC.c<b<aD.c<a<b

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.观察下表

则前2015行的个数和等于20152

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知抛物线C的顶点在坐标原点O,对称轴为x轴,焦点为F,抛物线上一点M的横坐标为2,且$\overrightarrow{FM}$•$\overrightarrow{OM}$=10.
(Ⅰ)求此抛物线C的方程;
(Ⅱ)过点(4,0)做直线l交抛物线C于A,B两点,求$\overrightarrow{OA}•\overrightarrow{OB}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设正项数列{an}是首项为a1,公差为2的等差数列,其前n项和为Sn,且S1+1,S2,S3-1成等比数列.
(1)求数列{an}的通项公式;
(2)设bn=$\frac{{a}_{n}}{{2}^{n}}$,记{bn}的前n项和为Tn,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若函数y=f(x)的定义域是[1,2016],则函数g(x)=f(x+1)的定义域是(  )
A.(0,2016]B.[0,2015]C.(1,2016]D.[1,2017]

查看答案和解析>>

同步练习册答案