精英家教网 > 高中数学 > 题目详情
16.在△ABC中,内角A,B,C的对边分别为a,b,c,且bsinA=$\sqrt{3}$acosB.
(1)求角B的大小;
(2)若a=2,△ABC的面积为$\sqrt{3}$,求b,c.

分析 (1)由正弦定理化简已知等式可得:sinBsinA=$\sqrt{3}$sinAcosB,结合sinA≠0,可求tanB=$\sqrt{3}$,即可得B的值.
(2)由已知可得:bsinA=$\frac{\sqrt{3}}{2}$a,利用三角形面积公式可求ac=4,可求c,进而利用余弦定理可求b的值.

解答 解:(1)∵bsinA=$\sqrt{3}$acosB,
∴由正弦定理可得:sinBsinA=$\sqrt{3}$sinAcosB,
∵A为三角形内角,sinA≠0,
∴得tanB=$\sqrt{3}$,
∴B=$\frac{π}{3}$.
(2)∵B=$\frac{π}{3}$,可得:bsinA=$\sqrt{3}$acosB=$\frac{\sqrt{3}}{2}$a,
∵a=2,△ABC的面积为$\sqrt{3}$=$\frac{1}{2}$bcsinA=$\frac{1}{2}$c×$\frac{\sqrt{3}}{2}$a,可得ac=4,
∴c=2,
∴由余弦定理可得:b=$\sqrt{{a}^{2}+{c}^{2}-2accosB}$=$\sqrt{{2}^{2}+{2}^{2}-2×2×2×\frac{1}{2}}$=2.

点评 本题主要考查了正弦定理,三角形面积公式,余弦定理在解三角形中的应用,考查了计算能力和转化思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知$\frac{4sinθ-2cosθ}{3sinθ+5cosθ}$=$\frac{6}{11}$,求下列各式的值.
(1)tanθ;
(2)$\frac{5cos{\;}^{2}θ}{sin2θ+2sinθcosθ-3cos{\;}^{2}θ}$;
(3)1-4sin θcos θ+2cos2θ.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知圆C:(x-1)2+y2=2,点P是圆内的任意一点,直线l:x-y+b=0.
(1)求点P在第一象限的概率;
(2)若b∈[-3,3],求直线l与圆C相交的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知$\frac{π}{2}<θ<π$,$sinθ=\frac{4}{5}$,则tan(π-θ)的值为(  )
A.$\frac{3}{4}$B.$\frac{4}{3}$C.$-\frac{3}{4}$D.$-\frac{4}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知f(x)=sin(2x+$\frac{π}{6}$)+$\frac{3}{2}$,x∈R.
(1)求函数f(x)的最小正周期和单调增区间;
(2)写出f(x)的图象是由正弦曲线y=sinx经过怎样的变换得到的?
(3)若$x∈[{0,\frac{π}{4}}]$,求f(x)的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知全集U={1,2,3,4,5,6,7,8},A={3,4,5},B={1,3,6},则集合{1,2,4,5,6,7,8}是(  )
A.A∪BB.A∩BC.UA∩∁UBD.UA∪∁UB

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.(1)函数$f(x)=log{{\;}_a^{(x+3)}}-1$(a>0且a≠1)的图象恒过定点A,若点A在直线mx+ny+1=0上,其中mn>0.求$\frac{1}{m}+\frac{1}{n}$的最小值.
(2)已知$x,y∈(-\sqrt{3},\sqrt{3})$且xy=-1.求$s=\frac{3}{{3-{x^2}}}+\frac{12}{{12-{y^2}}}$的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知$sinα+cos(π-α)=\frac{1}{3}$,则sin2α的值为$\frac{1}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设 a=log23,b=21.2,2,c=0.72.9,则(  )
A.b<a<cB.a<c<bC.c<b<aD.c<a<b

查看答案和解析>>

同步练习册答案