分析 作出不等式组对应的平面区域,利用x2+y2的几何意义求最小值.
解答
解:设z=x2+y2,则z的几何意义为动点P(x,y)到原点距离的平方.
作出不等式组$\left\{\begin{array}{l}{x-y+1≥0}\\{x+y-1≥0}\\{x≤2}\end{array}\right.$,对应的平面区域如图
原点到直线x+y-1=0的距离最小.
由点到直线的距离公式得d=$\frac{|-1|}{\sqrt{{1}^{2}+{1}^{2}}}$=$\frac{\sqrt{2}}{2}$,
所以z=x2+y2的最小值为z=d2=$\frac{1}{2}$.
故答案为:$\frac{1}{2}$.
点评 本题主要考查点到直线的距离公式,以及简单线性规划的应用,利用目标函数的几何意义是解决线性规划内容的基本方法,利用数形结合是解决本题的关键.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3}{4}$ | B. | $\frac{4}{3}$ | C. | $-\frac{3}{4}$ | D. | $-\frac{4}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | A∪B | B. | A∩B | C. | ∁UA∩∁UB | D. | ∁UA∪∁UB |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 若m∥α,n∥α,则m∥n | B. | 若m⊥α,α⊥β,则m∥β | C. | 若m∥α,α⊥β,则m⊥β | D. | 若m⊥α,α∥β,则m⊥β |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com