精英家教网 > 高中数学 > 题目详情
椭圆C的中心在原点O,焦点在x轴,它的短轴长为2,过焦点与x轴垂直的直线与椭圆C相交于A,B两点且|AB|=1.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过定点N(1,0)的直线l交椭圆C于C、D两点,交y轴于点P,若
PC
1
CN
PD
=λ2
DN
,求证:λ12为定值.
(Ⅰ)设椭圆方程为
x2
a2
+
y2
b2
=1

令x=-c,代入椭圆方程得,y=±
b2
a

所以2×
b2
a
=1,2b=2,
解得a=2,b=1.
∴椭圆的标准方程为
x2
4
+y2=1

(Ⅱ)设直线l的方程为x=my-1,则P点坐标为(0,
1
m

设C(x1,y1),D(x2,y2
联立直线与椭圆的方程
x=my-1
x2
4
+y2=1
,得(m2+4)y2-2my-3=0,
∴y1+y2=
2m
m2+4
,y1y2=
-3
m2+4

又∵
PC
1
CN
PD
=λ2
DN

∴λ1=
1
m
-y1
y1
,λ2=
1
m
-y2
y2

∴λ12=
1
m
-y1
y1
+
1
m
-y2
y2
=
1
my1
+
1
my2
-2=
y1+y2
my1y2
-2=-
2
3
-2=-
8
3

即λ12为定值
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

设椭圆
x2
a2
+
y2
b2
=1
(a>b>0)的左、右顶点分别为A(-
2
,0)、B(
2
,0),离心率e=
2
2
.过该椭圆上任一点P作PQ⊥x轴,垂足为Q,点C在QP的延长线上,且|PC|=(
2
-1)|PQ|.
(1)求椭圆的方程;
(2)求动点C的轨迹E的方程;
(3)设直线MN过椭圆的右焦点与椭圆相交于M、N两点,且|MN|=
8
2
7
,求直线MN的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知圆C1的方程为(x-2)2+(y-1)2=
20
3
,椭圆C2的方程为
x2
a2
+
y2
b2
=1
(a>b>0),C2的离心率为
2
2
,如果C1与C2相交于A、B两点,且线段AB恰为圆C1的直径,求直线AB的方程和椭圆C2的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

过(2,0)点且倾斜角为60°的直线与椭圆
x2
5
+
y2
3
=1
相交于A,B两点,则AB中点的坐标为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

过x轴上动点A(a,0)引抛物线y=x2+1的两条切线AP、AQ,P、Q为切点.
(1)若切线AP,AQ的斜率分别为k1和k2,求证:k1•k2为定值,并求出定值;
(2)求证:直线PQ恒过定点,并求出定点坐标;
(3)当
S△APO
PQ
最小时,求
AQ
AP
的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知直线y=kx-1与双曲线x2-y2=4没有公共点,则实数k的取值范围为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C1
x2
4
+
y2
3
=1
和抛物线C2:y2=2px(p>0),过点M(1,0)且倾斜角为
π
3
的直线与抛物线交于A、B,与椭圆交于C、D,当|AB|:|CD|=5:3时,求p的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知点P(-1,
3
2
)
是椭圆E:
x2
a2
+
y2
b2
=1
(a>b>0)上一点,F1、F2分别是椭圆E的左、右焦点,O是坐标原点,PF1⊥x轴.
(1)求椭圆E的方程;
(2)设A、B是椭圆E上两个动点,是否存在λ,满足
PA
+
PB
PO
(0<λ<4,且λ≠2),且M(2,1)到AB的距离为
5
?若存在,求λ值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

斜率为2的直线l与双曲线
x2
3
-
y2
2
=1
交于A,B两点,且|AB|=4,求直线l的方程.

查看答案和解析>>

同步练习册答案