精英家教网 > 高中数学 > 题目详情
过(2,0)点且倾斜角为60°的直线与椭圆
x2
5
+
y2
3
=1
相交于A,B两点,则AB中点的坐标为______.
由题意可得过(2,0)且倾斜角为60°的直线方程为:y=
3
(x-2)

联立方程
y=
3
(x-2)
x2
5
+
y2
3
=1
可得6x2-20x+15=0
设A(x1,y1)B(x2,y2),AB的中点M(x0,y0
x0=
x1+x2
2
=
5
3

y0=
y1+y2
2
=
1
2
×
3
(x1+x2-4)=-
3
3

故答案为:(
5
3
,-
3
3
)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

设双曲线方程
x2
a2
-
y2
b2
=1(b>a>0)
的半焦距为c,直线l过(a,0),(0,b)两点,已知原点到直线l的距离为
3
4
c

(1)求双曲线的离心率;
(2)经过该双曲线的右焦点且斜率为2的直线m被双曲线截得的弦长为15,求双曲线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知点D(0,-2),过点D作抛物线C1:x2=2py(p>0)的切线l,切点A在第二象限,如图
(Ⅰ)求切点A的纵坐标;
(Ⅱ)若离心率为
3
2
的椭圆
x2
a2
+
y2
b2
=1(a>b>0)
恰好经过切点A,设切线l交椭圆的另一点为B,记切线l,OA,OB的斜率分别为k,k1,k2,若k1+2k2=4k,求椭圆方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知直线y=a交抛物线y=x2于A,B两点,若该抛物线上存在点C,使得∠ACB为直角,则a的取值范围为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

双曲线x2-y2=a2截直线4x+5y=0的弦长为
41
,则此双曲线的实轴长为(  )
A.3B.
3
2
C.
12
5
D.
6
5

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设抛物线C1:y2=4mx(m>0)的准线与x轴交于F1,焦点为F2,以F1,F2为焦点,离心率为
1
2
的椭圆C2与抛物线C1的一个交点为P.
(1)若椭圆的长半轴长为2,求抛物线方程;
(2)在(1)的条件下,直线l经过椭圆C2的右焦点F2,与抛物线C1交于A1,A2两点,如果|A1A2|等于△PF1F2的周长,求l的斜率;
(3)是否存在实数m,使得△PF1F2的边长是连续的自然数?若存在,求出m的值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

椭圆C的中心在原点O,焦点在x轴,它的短轴长为2,过焦点与x轴垂直的直线与椭圆C相交于A,B两点且|AB|=1.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过定点N(1,0)的直线l交椭圆C于C、D两点,交y轴于点P,若
PC
1
CN
PD
=λ2
DN
,求证:λ12为定值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设椭圆的中心为坐标原点O,焦点在x轴上,焦距为2,F为右焦点,B1为下顶点,B2为上顶点,SB1FB2=1
(I)求椭圆的方程;
(Ⅱ)若直线l同时满足下列三个条件:①与直线B1F平行;②与椭圆交于两个不同的点P、Q;③S△POQ=
2
3
,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如果椭圆
x2
36
+
y2
9
=1
的弦AB被点M(x0,y0)平分,设直线AB的斜率为k1,直线OM(O为坐标原点)的斜率为k2,则k1•k2=(  )
A.4B.
1
4
C.-1D.-
1
4

查看答案和解析>>

同步练习册答案