精英家教网 > 高中数学 > 题目详情
已知函数f(x)=lg
1+x1-x

(1)求f(x)的定义域;
(2)求使f(x)>0的x的取值范围.
分析:首先对于(1)分析对数函数f(x)=lg
1+x
1-x
,所以定义域应为
1+x
1-x
>0
,解出即可得到答案.
对于(2)f(x)>0,列出式子lg
1+x
1-x
>0
,且要满足x属于定义域,解不等式即可.
解答:解:(1)求函数f(x)=lg
1+x
1-x
的定义域,
即:
1+x
1-x
>0?-1<x<1

所以,定义域是(-1,1);
(2)f(x)=lg
1+x
1-x
>0
?
1+x
1-x
>1
-1<x<1
?
0< x<1
-1<x<1
?0<x<1

所以x的取值范围为0<x<1.
点评:此题主要考查对数函数定义域的问题,对数函数在高考中属于必考的函数类型,多数出现在填空题选择题中,需要同学们多加注意.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
1
3
x3-
3
2
ax2-(a-3)x+b

(1)若函数f(x)在P(0,f(0))的切线方程为y=5x+1,求实数a,b的值:
(2)当a<3时,令g(x)=
f′(x)
x
,求y=g(x)在[l,2]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
2
x2-alnx
的图象在点P(2,f(2))处的切线方程为l:y=x+b
(1)求出函数y=f(x)的表达式和切线l的方程;
(2)当x∈[
1
e
,e]
时(其中e=2.71828…),不等式f(x)<k恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lnx,g(x)=
12
x2+a
(a为常数),直线l与函数f(x)、g(x)的图象都相切,且l与函数f(x)的图象的切点的横坐标为1.
(1)求直线l的方程及a的值;
(2)当k>0时,试讨论方程f(1+x2)-g(x)=k的解的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
13
x3+x2+ax

(1)讨论f(x)的单调性;
(2)设f(x)有两个极值点x1,x2,若过两点(x1,f(x1)),(x2,f(x2))的直线l与x轴的交点在曲线y=f(x)上,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3-
32
ax2+b
,a,b为实数,x∈R,a∈R.
(1)当1<a<2时,若f(x)在区间[-1,1]上的最小值、最大值分别为-2、1,求a、b的值;
(2)在(1)的条件下,求经过点P(2,1)且与曲线f(x)相切的直线l的方程;
(3)试讨论函数F(x)=(f′(x)-2x2+4ax+a+1)•ex的极值点的个数.

查看答案和解析>>

同步练习册答案