精英家教网 > 高中数学 > 题目详情
9.若无重复数字的三位数满足条件:①个位数字与十位数字之和为奇数,②所有位的数字和为偶数.则这样的三位数的个数是(  )
A.540B.480C.360D.200

分析 因为①个位数字与十位数字之和为奇数,②所有位的数字和为偶数,所以这个三位数有2个奇数和一个偶数,再根据分步计数原理即可得到答案.

解答 解:因为①个位数字与十位数字之和为奇数,②所有位的数字和为偶数,所以这个三位数有2个奇数和一个偶数,故有C51A21A52=200个.
故选:D.

点评 本题考查了分步计数原理,判断出这个三位数有2个奇数和一个偶数,是关键,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.若定义在R上的函数f(x)满足f(x)=$\frac{f′(1)}{2}$•e2x-2+x2-2f(0)x,g(x)=f($\frac{x}{2}$)-$\frac{1}{4}$x2+(1-a)x+a,a∈R.
(Ⅰ)求函数f(x)解析式;
(Ⅱ)求函数g(x)单调区间;
(Ⅲ)若x、y、m满足|x-m|≤|y-m|,则称x比y更接近m.当a≥2且x≥1时,试比较$\frac{e}{x}$和ex-1+a哪个更接近lnx,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知k∈R,函数f(x)=lnx-kx.
(Ⅰ)若k>0,求函数f(x)的单调区间;
(Ⅱ)若f(x)有两个相异的零点x1,x2,求证:x1•x2>e2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知实数x,y满足平面区域$D:\left\{\begin{array}{l}x+y-1≥0\\ 2x-y-2≤0\\ x-2y+2≥0\end{array}\right.$,则x2+y2的最大值为(  )
A.$\frac{1}{2}$B.1C.$2\sqrt{2}$D.8

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.如图,在正四棱柱(底面是正方形的直棱柱)ABCD-A1B1C1D1中,E是BC的中点,F是C1D的中点,P是棱CC1所在直线上的动点.则下列四个命题:
①CD⊥PE②EF∥平面ABC1③${V_{P-{A_1}D{D_1}}}={V_{{D_1}-ADE}}$
④过P可做直线与正四棱柱的各个面都成等角.
其中正确命题的序号是①②③④(写出所有正确命题的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=ax-ln(x+b)在点(1,1)处的切线与x轴平行.
(1)求实数a,b的值;
(2)证明:$\sum_{k=2}^n\frac{1}{k-f(k)}>\frac{{3{n^2}-n-2}}{n(n+1)}$(n∈N,n≥2).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.一个直六棱柱的底面是边长为2的正六边形,侧棱长为3,则它的外接球的表面积为25π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在如图所示的几何体中,四边形CDEF为正方形,四边形ABCD为等腰梯形,AB∥CD,AC=$\sqrt{3}$,AB=2BC=2,AC⊥FB.
(1)求三棱锥A-BCF的体积.
(2)线段AC上是否存在点M,使得EA∥平面FDM?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.用逆矩阵的知识解方程MX=N,其中M=$|\begin{array}{l}{5}&{2}\\{4}&{1}\end{array}|$,N=$|\begin{array}{l}{5}\\{-8}\end{array}|$.

查看答案和解析>>

同步练习册答案