精英家教网 > 高中数学 > 题目详情
关于直线a、b,以及平面M、N,给出下列命题:
①若a//M, b//M,则a//b      ②若a//M, b⊥M,则ab
③若a//b, b//M,则a//M      ④若a⊥M, a//N,则M⊥N
其中正确的命题的个数为(   )
A.0B.1C.2D.3
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图6,已知正三棱柱ABC—A1B1C1中,D是BC的中点,AA1=AB=1。
(1)求证:平面AB1D⊥平面B1BCC1
(2)求证:A1C//平面AB1D;
(3)求二面角B—AB1—D的正切值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

三棱锥P-ABC中,三侧棱PA、PB、PC两两相互垂直,三侧面面积分
别为S1、S2、S3,底面积为S,三侧面与底面分别成角α、β、γ,(1)求S(用S1、S2、S3表示);(2)求证:cos2α+cos2β+cos2γ=1;

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)在直三棱柱中,,直线与平面角;

(1)求证:平面平面
(2)求二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知△ABC内接于圆O,AB是圆O的直径,四边形DCBE

为平行四边形,DC平面ABC ,
(1)证明:平面ACD平面
(2)记表示三棱锥A-CBE的体积,求的表达式;
(3)当取得最大值时,求证:AD=CE.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,在四棱锥P—ABCD中,底面ABCD是矩形,已知AB = 3,AD = 2,PA = 2,
(1)   证明:AD⊥平面PAB
(2)   求异面直线PCAD所成的角的大小;
(3)   求二面角P—BD—A的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图:在四棱锥中,底面为菱形,与底面垂直,
为棱的中点,的中点,的交点,

(1)求证:
(2)求锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题











(1)证明:
(2)若上的动点,与平面所成最大角的正切值为,求锐二面角的余弦值;
(3)在(2)的条件下,设,求点到平面的距离。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若某几何体的三视图(单位:cm)如图所示,则此
几何体的体积是       

查看答案和解析>>

同步练习册答案