【题目】函数
对任意的
满足:
,当
时,![]()
(1)求出函数在R上零点;
(2)求满足不等式
的实数
的范围.
【答案】(1)
;(2)
.
【解析】
(1)根据奇偶函数的定义、函数的周期定义,结合已知可以判断出该函数的奇偶性和周期,可以判断出
时,
的零点情况,最后利用函数的奇偶性和周期求出函数在R上零点;
(2)先判断出当
时,函数的单调性,再利用函数的奇偶性,可以化简不等式,最后求出实数
的范围.
(1)因为
,所以函数
是周期为2的奇函数.
因为
,所以当
时,函数没有零点,根据奇函数的对称性可知:当
,函数没有零点,而
,令
,有
,而由奇函数的性质可知:
,所以有
,因此当
时,函数有三个零点,又因为函数的周期是2,所以函数的零点为:
,即
;
(2)设
,因此
.
,
因为
,所以
,因此
,故函数
在
时是增函数.
因为函数
是奇函数,所以![]()
因为
,所以
,
,因此当
时,根据单调性可知:
![]()
.
科目:高中数学 来源: 题型:
【题目】已知数列
与
满足
,
.
(1)若
,且
,求
的通项公式;
(2)设
的第
项是最大项,即
,求证:
的第
项是最大项;
(3)设
,求
的取值范围,使得
有最大值
与最小值
,且
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设中心在原点,焦点在
轴上的椭圆
过点
,且离心率为
.
为
的右焦点,
为
上一点,
轴,
的半径为
.
(1)求
和
的方程;
(2)若直线
与
交于
两点,与
交于
两点,其中
在第一象限,是否存在
使
?若存在,求
的方程;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】水库的蓄水量随时间而变化,现用t表示时间,以月为单位,年初为起点(用t表示第t月份,
),根据历年数据,某水库的蓄水量V(单位:亿立方米)与时间t的近似函数关系为:当0<t≤10时,
;当10<t≤12时,
;若2月份该水库的蓄水量为33.6亿立方米.
(1)求实数a的值;
(2)求一年内该水库的最大蓄水量.
参考数据:
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
,
,![]()
(1)若函数f(x)有两个零点,求实数a的取值范围;
(2)若a=3,且对任意的x1∈[-1,2],总存在
,使g(x1)-f(x2)=0成立,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
.
(1)当
时,求函数
在
处的切线方程;
(2)是否存在非负整数
,使得函数
是单调函数,若存在,求出
的值;若不存在,请说明理由;
(3)已知
,若存在
,使得当
时,
的最小值是
,求实数
的取值范围.(注:自然对数的底数
)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于函数
,若在定义域内存在实数
,满足
,则称
为“
类函数”.
(1)已知函数
,试判断
是否为“
类函数”?并说明理由;
(2)设
是定义在
上的“
类函数”,求是实数
的最小值;
(3)若
为其定义域上的“
类函数”,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】大衍数列,来源于《乾坤谱》中对易传“大衍之数五十“的推论.主要用于解释中国传统文化中的太极衍生原理数列中的每一项,都代表太极衍生过程中,曾经经历过的两仪数量总和是中华传统文化中隐藏着的世界数学史上第一道数列题其规律是:偶数项是序号平方再除以2,奇数项是序号平方减1再除以2,其前10项依次是0,2,4,8,12,18,24,32,40,50,…,如图所示的程序框图是为了得到大衍数列的前100项而设计的,那么在两个判断框中,可以先后填入( )
![]()
A.
是偶数?,
? B.
是奇数?,
?
C.
是偶数?,
? D.
是奇数?,
?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】两个函数
在公共定义域上恒有
,则称这两个函数是该区间上的“同步函数”.
(1)试判断
与
是否为公共定义域上的“同步函数”?
(2)已知函数
与
是公共区域上的“同步函数”,求实数
的取值范围;
(3)已知
与
在
上是“同步函数”,求实数
的取值范围。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com