分析 (1)由已知结合等差数列的性质求得a8,则a3+a13等于2a8可求;
(2)利用等差数列的性质,a9+a10,a19+a20…a99+a100仍成等差数列,利用等差数列的通项公式可求得答案.
解答 解:在等差数列{an}中,
(1)由a1-a4-a8-a12+a15=2,得
(a1+a15)-(a4+a8+a12)=2,
即2a8-3a8=2,∴a8=-2,
∴a3+a13=2a8=-4;
(2)∵{an}为等差数列,
∴a9+a10,a19+a20…a99+a100仍成等差数列,且公差为b-a,
由已知得a99+a100=a+9•(b-a)=9b-8a.
点评 本题考查等差数列的性质与通项公式,关键在于对性质的灵活运用,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | f(-$\frac{3π}{4}$)<f($\frac{5π}{3}$)<f($\frac{7π}{6}$) | B. | f(-$\frac{3π}{4}$)<f($\frac{7π}{6}$)<f($\frac{5π}{3}$) | C. | f($\frac{5π}{3}$)<f($\frac{7π}{6}$)<f(-$\frac{3π}{4}$) | D. | f($\frac{5π}{3}$)<f(-$\frac{3π}{4}$)<f($\frac{7π}{6}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [-$\frac{π}{3}$,$\frac{π}{6}$] | B. | [-$\frac{π}{4}$,$\frac{π}{4}$] | C. | [$\frac{π}{6}$,$\frac{2π}{3}$] | D. | [$\frac{π}{4}$,$\frac{3π}{4}$] |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [$\frac{1}{2}$ln2,+∞] | B. | [0,$\frac{1}{2}$ln2] | C. | (-∞,0] | D. | (-∞,$\frac{1}{2}$ln2] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 7 | B. | 8 | C. | 9 | D. | 10 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com