精英家教网 > 高中数学 > 题目详情

已知函数上为增函数,且,为常数,.
(1)求的值;
(2)若上为单调函数,求的取值范围;
(3)设,若在上至少存在一个,使得成立,求的取值范围.

(1)    (2)   (3)            

解析试题分析:(1)由题意:上恒成立,即
上恒成立,
只需sin
(2) 由(1),得f(x)-g(x)=-,,由于f(x)-g(x)在其定义域内为单调函数,则上恒成立,即上恒成立,故,综上,m的取值范围是          
(3)构造函数F(x)=f(x)-g(x)-h(x),,
得,,所以在上不存在一个,使得;   
当m>0时,,因为,所以上恒成立,故F(x)在上单调递增,,故m的取值范围是     
另法:(3)  令


考点:导数的运算性质,恒成立问题,构造函数思想。
点评:本题综合运用导数性质,恒成立思想,构造函数思想综合求出的范围。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数f(x)=ln(1+x)-.
(1)求f(x)的极小值;   (2)若a、b>0,求证:lna-lnb≥1-.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知曲线f (x ) =" a" x 2 +2在x=1处的切线与2x-y+1=0平行
(1)求f (x )的解析式 
(2)求由曲线y="f" (x ) 与所围成的平面图形的面积。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分15分)
已知函数
(Ⅰ)当时,试判断的单调性并给予证明;
(Ⅱ)若有两个极值点
(i) 求实数a的取值范围;
(ii)证明:。 (注:是自然对数的底数)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知函数
(Ⅰ)讨论函数的单调区间和极值点;
(Ⅱ)若函数有极值点,记过点与原点的直线斜率为。是否存在使?若存在,求出值;若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数(a为实常数).
(1)若,求证:函数在(1,+.∞)上是增函数;
(2)求函数在[1,e]上的最小值及相应的值;
(3)若存在,使得成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)已知函数 。
如果,函数在区间上存在极值,求实数a的取值范围;
时,不等式恒成立,求实数k的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,(为自然对数的底数)。
(1)当时,求函数在区间上的最大值和最小值;
(2)若对任意给定的,在上总存在两个不同的,使得成立,求的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
设函数,曲线过点,且在点处的切线斜率为2.
(1)求的值;
(2)证明:

查看答案和解析>>

同步练习册答案