精英家教网 > 高中数学 > 题目详情

(本小题满分12分)
设函数,曲线过点,且在点处的切线斜率为2.
(1)求的值;
(2)证明:

(1)(2)见解析。

解析试题分析:(1)
由已知条件得解得     ----------------6分
(2)的定义域为
由(1)知,


时,;当时,
所以在上单调增加,在上单调减少。
,故当时,
                    ------------12分
考点:本题考查导数的几何意义;利用导数研究函数的单调性和最值。
点评:做此题的关键是把证明“”转化为“证明函数y=f(x)-(2x-2)的最大值不超过0”,然后利用导数研究函数的单调性,可得此函数的最大值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数上为增函数,且,为常数,.
(1)求的值;
(2)若上为单调函数,求的取值范围;
(3)设,若在上至少存在一个,使得成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分16分)
已知函数.
(1)当时,若函数在区间上是单调增函数,试求的取值范围;
(2)当时,直接写出(不需给出演算步骤)函数 ()的单调增区间;
(3)如果存在实数,使函数)在
 处取得最小值,试求实数的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题共13分)设k∈R,函数   ,,x∈R.试讨论函数F(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

本题满分10分)
设函数为奇函数,其图象在点处的切线与直线垂直,导函数的最小值为.试求的值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
设函数的图像与直线相切于点.
(Ⅰ)求的值;
(Ⅱ)讨论函数的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分10分)(1)求函数的导数.
(2)求函数f(x)=在区间[0,3]上的积分.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题16分)已知函数满足满足
(1)求的解析式及单调区间;
(2)若,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)若处取得极值,求的值;
(Ⅱ)讨论的单调性;
(Ⅲ)证明:为自然对数的底数)

查看答案和解析>>

同步练习册答案