精英家教网 > 高中数学 > 题目详情

(本小题满分12分)
设函数的图像与直线相切于点.
(Ⅰ)求的值;
(Ⅱ)讨论函数的单调性.

(Ⅰ)
(Ⅱ)故当x, -1)时,f(x)是增函数,当 x(3,)时,f(x)也是增函数,
当x(-1 ,3)时,f(x)是减函数.

解析试题分析:(I)由于和函数f(x)过点(1,-11)可建立关于a,b的方程求出a,b的值.
(II)根据可求得函数f(x)的单调递增(减)区间.
(Ⅰ)求导得.     -------------------2分
由于 的图像与直线相切于点
所以,                             -------------- 4分
即:
                  1-3a+3b = -11       解得: .                                -------------------- 6分
3-6a+3b=-12
(Ⅱ)由得:
 ------------ 8分
令f′(x)>0,解得 x<-1或x>3;
又令f′(x)< 0,解得 -1<x<3.         ------ 10分
故当x, -1)时,f(x)是增函数,当 x(3,)时,f(x)也是增函数,
当x(-1 ,3)时,f(x)是减函数. --------------------- 12分
考点:导数的几何意义,利用导数求函数的极大值.
点评:在某点处的导数就是在此点处的切线的斜率,利用导数大(小)零解不等式可得函数的单调递增(减)区间.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数(a为实常数).
(1)若,求证:函数在(1,+.∞)上是增函数;
(2)求函数在[1,e]上的最小值及相应的值;
(3)若存在,使得成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)已知函数,函数的最小值为
(1)当时,求
(2)是否存在实数同时满足下列条件:①;②当的定义域为 时,值域为?若存在,求出的值;若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知函数
(Ⅰ)讨论函数在定义域内的极值点的个数;
(Ⅱ)若函数处取得极值,对,恒成立,
求实数的取值范围;
(Ⅲ)当时,试比较的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
设函数,曲线过点,且在点处的切线斜率为2.
(1)求的值;
(2)证明:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)已知,在时,都取得极值。
(Ⅰ)求的值;
(Ⅱ)若都有恒成立,求c的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(10分)求下列函数的导数
      ②

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分) 
已知a∈R,函数f(x)=4x3-2ax+a.
(1)求f(x)的单调区间;
(2)证明:当0≤x≤1时,f(x)+|2-a|>0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数(Ⅰ) 当时,求函数的极值;
(Ⅱ)当时,讨论函数的单调性.     (Ⅲ)(理科)若对任意及任意,恒有 成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案