精英家教网 > 高中数学 > 题目详情

已知函数(a为实常数).
(1)若,求证:函数在(1,+.∞)上是增函数;
(2)求函数在[1,e]上的最小值及相应的值;
(3)若存在,使得成立,求实数a的取值范围.

(1)当时,,当
(2)当时,的最小值为1,相应的x值为1;当时,
的最小值为,相应的x值为;当时,的最小值为
相应的x值为
(3)

解析试题分析:(1)当时,,当
故函数上是增函数.         4分
(2),当
上非负(仅当,x=1时,),故函数上是增函数,此时.                6分
,当时, ;当时,,此时
是减函数; 当时,,此时是增函数.故

上非正(仅当,x=e时,),故函数上是减函数,此时.    8分
综上可知,当时,的最小值为1,相应的x值为1;当时,
的最小值为,相应的x值为;当时,的最小值为
相应的x值为.        10分
(3)不等式,可化为
, ∴且等号不能同时取,所以,即
因而)      12分
),又,       14分
时,
从而(仅当x=1时取等号),所以

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

为实数,函数
①求的单调区间与极值;
②求证:当时,

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)
设函数(a>0,b,cÎR),曲线在点P(0,f (0))处的切线方程为
(Ⅰ)试确定b、c的值;
(Ⅱ)是否存在实数a使得过点(0,2)可作曲线的三条不同切线,若存在,求出a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数.
(Ⅰ)若,求的最小值;
(Ⅱ)若当,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数上为增函数,且,为常数,.
(1)求的值;
(2)若上为单调函数,求的取值范围;
(3)设,若在上至少存在一个,使得成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1) 若的极值点,求在[1,]上的最大值;
(2) 若在区间[1,+)上是增函数,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)
已知函数处有极小值
(1)求函数的解析式;
(2)若函数只有一个零点,求的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分10分)  如图,由y=0,x=8,y=x2围成的曲边三角形,在曲线弧OB上求一点M,使得过M所作的y=x2的切线PQ与OA,AB围成的三角形PQA面积最大。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
设函数的图像与直线相切于点.
(Ⅰ)求的值;
(Ⅱ)讨论函数的单调性.

查看答案和解析>>

同步练习册答案