【题目】已知
,
.
(1)讨论
的单调区间;
(2)当
时,证明:
.
【答案】(1)
在
上单调递减;在
和
上单调递增.(2)见解析
【解析】
(1)先求函数的定义域,再进行求导得
,对
分成
,
,
三种情况讨论,求得单调区间;
(2)要证由
,等价于证明
,再对
分
,
两种情况讨论;证明当
时,不等式成立,可先利用放缩法将参数
消去,转化成证明不等式
成立,再利用构造函数
,利用导数证明其最小值大于0即可。
(1)
的定义域为
,
,
当
时,由
,得
;
由
,得
,
所以
在
上单调递减,在
上单调递增;
当
时,由
,得
或
;
由
,得
;
所以
在
上单调递减,在
和
上单调递增;
当
时,由
,得
在
上单调递增;
当
时,由
,得
或
;由
,得
;
所以
在
上单调递减;在
和
上单调递增.
(2)由
,得
,
①当
时,
,
,不等式显然成立;
②当
时,
,由
,得
,
所以只需证:
,
即证
,令
,
则
,
,
令
,
则
,
令
,
则
,
所以
在
上为增函数,
因为
,
,
所以存在
,
,
所以
在
上单调递减,在
上单调递增,
又因为
,
,
当
时,
,
在
上单调递减,
当
时,
,
在
上单调递增,
所以
,
所以
,
所以原命题得证
科目:高中数学 来源: 题型:
【题目】如图,在三棱柱
中,
平面
,
,
,
的中点为
.
![]()
(Ⅰ)求证:
;
(Ⅱ)求二面角
的余弦值;
(Ⅲ)在棱
上是否存在点
,使得
平面
?若存在,求出
的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】黄冈“一票通”景区旅游年卡,是由黄冈市旅游局策划,黄冈市大别山旅游公司推出的一项惠民工程,持有旅游年卡一年内可不限次畅游全市19家签约景区.为了解市民每年旅游消费支出情况
单位:百元
,相关部门对已游览某签约景区的游客进行随机问卷调查,并把得到的数据列成如表所示的频数分布表:
组别 |
|
|
|
|
|
频数 | 10 | 390 | 400 | 188 | 12 |
求所得样本的中位数
精确到百元
;
根据样本数据,可近似地认为市民的旅游费用支出服从正态分布
,若该市总人口为750万人,试估计有多少市民每年旅游费用支出在7500元以上;
若年旅游消费支出在
百元
以上的游客一年内会继续来该景点游玩现从游客中随机抽取3人,一年内继续来该景点游玩记2分,不来该景点游玩记1分,将上述调查所得的频率视为概率,且游客之间的选择意愿相互独立,记总得分为随机变量X,求X的分布列与数学期望.
参考数据:,
;![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线
,
为其焦点,
为其准线,过
任作一条直线交抛物线于
两点,
、
分别为
、
在
上的射影,
为
的中点,给出下列命题:
(1)
;(2)
;(3)
;
(4)
与
的交点的
轴上;(5)
与
交于原点.
其中真命题的序号为_________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于函数
,若存在正常数
,使得对任意的
,都有
成立,我们称函数
为“
同比不减函数”.
(1)求证:对任意正常数
,
都不是“
同比不减函数”;
(2)若函数
是“
同比不减函数”,求
的取值范围;
(3)是否存在正常数
,使得函数
为“
同比不减函数”,若存在,求
的取值范围;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,
为信号源点,
、
、
是三个居民区,已知
、
都在
的正东方向上,
,
,
在
的北偏西45°方向上,
,现要经过点
铺设一条总光缆直线
(
在直线
的上方),并从
、
、
分别铺设三条最短分支光缆连接到总光缆
,假设铺设每条分支光缆的费用与其长度的平方成正比,比例系数为1元/
,设
,(
),铺设三条分支光缆的总费用为
(元).
![]()
(1)求
关于
的函数表达式;
(2)求
的最小值及此时
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,
是由两个全等的菱形
和
组成的空间图形,
,∠BAF=∠ECD=60°.
![]()
(1)求证:
;
(2)如果二面角B-EF-D的平面角为60°,求直线
与平面
所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
:
的离心率为
,过左焦点
的直线与椭圆交于
,
两点,且线段
的中点为
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)设
为
上一个动点,过点
与椭圆
只有一个公共点的直线为
,过点
与
垂直的直线为
,求证:
与
的交点在定直线上,并求出该定直线的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com