精英家教网 > 高中数学 > 题目详情
已知P在双曲线
x2
a2
-
y2
9
=1上,双曲线的一条渐近线为直线y=
3
2
x,左、右焦点分别是F1,F2.若PF1=5,则PF2的长为(  )
分析:由双曲线的方程以及渐近线的方程求出a,由双曲线的定义求出|PF2|.
解答:解:由双曲线的方程、渐近线的方程可得
3
2
=
3
a
,∴a=2.由双曲线的定义可得||PF2|-5|=4,
∴|PF2|=9,或|PF2|=1,当|PF2|=1时,
|PF2|≥
13
-2
>1,故|PF2|=9
故选D.
点评:本题考查双曲线的定义和双曲线的标准方程,以及双曲线的简单性质的应用,由双曲线的方程、渐近线的方程求出a是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知a>0,设p:函数y=ax在R上单调递减;命题q:方程
x2
a-2
+
y2
a-0.5
=1
表示的曲线是双曲线,如果“p或q”为真,“p且q”为假,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知双曲线
x2
a 2
-
y2
b 2
=1
(b>a>0),0为坐标原点,离心率e=2,点M(
5
3
)在双曲线上.
(1)求双曲线的方程;
(2)若直线l与双曲线交于P、Q两点,且
OP
OQ
=0,求:|OP|2+|OQ|2的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:曲线
x2
a-2
-
y2
6-a
=1为双曲线;命题q:函数f(x)=(4-a)x在R上是增函数;若命题“p或q”为真,“p且q”为假,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知a>0,设p:函数y=ax在R上单调递减;命题q:方程
x2
a-2
+
y2
a-0.5
=1
表示的曲线是双曲线,如果“p或q”为真,“p且q”为假,求a的取值范围.

查看答案和解析>>

同步练习册答案