精英家教网 > 高中数学 > 题目详情
6.在长方体ABCD-A1B1C1D1中,AB=BC=2,AA1=1,E、F分别为BC、CC1的中点,则直线EF与平面BB1D1D所成角的正弦值为(  )
A.$\frac{{\sqrt{6}}}{3}$B.$\frac{{2\sqrt{5}}}{5}$C.$\frac{{\sqrt{15}}}{5}$D.$\frac{{\sqrt{10}}}{5}$

分析 以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,利用向量法能求出直线EF与平面BB1D1D所成角的正弦值.

解答 解:以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,
∵在长方体ABCD-A1B1C1D1中,AB=BC=2,AA1=1,E、F分别为BC、CC1的中点,
∴E(1,2,0),F(0,2,$\frac{1}{2}$),D(0,0,0),B(2,2,0),D1(0,0,1),
$\overrightarrow{DB}$=(2,2,0),$\overrightarrow{D{D}_{1}}$=(0,0,1),$\overrightarrow{EF}$=(-1,0,$\frac{1}{2}$),
设平面BB1D1D的法向量$\overrightarrow{n}$=(x,y,z),
则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{DB}=2x+2y=0}\\{\overrightarrow{n}•\overrightarrow{D{D}_{1}}=z=0}\end{array}\right.$,取x=1,得$\overrightarrow{n}$=(1,-1,0),
设直线EF与平面BB1D1D所成角为θ,
则sinθ=|cos<$\overrightarrow{n},\overrightarrow{EF}$>|=$\frac{|\overrightarrow{n}•\overrightarrow{EF}|}{|\overrightarrow{n}|•|\overrightarrow{EF}|}$=$\frac{1}{\sqrt{\frac{5}{4}}•\sqrt{2}}$=$\frac{\sqrt{10}}{5}$.
∴直线EF与平面BB1D1D所成角的正弦值为$\frac{\sqrt{10}}{5}$.
故选:D.

点评 本题考查线面角的正弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查化归与转化思想、考查函数与方程思想、数形结合思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.已知函数f(x)=2x2+ax-b(a,b∈R)的两个零点分别在区间$(\frac{1}{2},1)$和(1,2)内,则z=a+b的最大值为(  )
A.0B.-4C.$-\frac{14}{3}$D.-6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=xlnx+2,g(x)=x2-mx.
(1)求f(x)在点(1,f(1))处的切线方程;
(2)求函数f(x)在[t,t+2](t>0)上的最小值;
(3)若存在${x_0}∈[{\frac{1}{e},e}]$使得mf'(x)+g(x)≥2x+m成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=x2-ax(a≠0),g(x)=lnx,f(x)的图象在它与x轴异于原点的交点M处的切线为l1,g(x-1)的图象在它与x轴的交点N处的切线为l2,且l1与l2平行.
(1)求a的值;
(2)已知t∈R,求函数y=f(xg(x)+t)在x∈[1,e]上的最小值h(t);
(3)令F(x)=g(x)+g′(x),给定x1,x2∈(1,+∞),x1<x2,对于两个大于1的正数α,β,存在实数m满足:α=mx1+(1-m)x2,β=(1-m)x1+mx2,并且使得不等式|F(α)-F(β)|<|F(x1)-F(x2)|恒成立,求实数m的取值范围..

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.数列{an}的各项均为正数,a1=1,对任意n∈N*,an+12-1=4an(an+1),数列{bn}满足b1=$\frac{1}{2}$,bn+1=$\frac{n+1}{2n}{b_n}$.
(1)求数列{an},{bn}的通项公式;
(2)记Tn为数列{bn}的前n项和,Sn为数列{log2(an+1)}的前n项和.f(n)=$\frac{{2{S_n}(2-{T_n})}}{n+2}$,试问f(n)是否存在最大值?若存在,求出最大值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,在五面体ABCDEF中,AB∥CD∥EF,CD=EF=CF=2AB=2AD=2,∠ACF=60°,AD⊥CD,平面CDEF⊥平面ABCD,P是BC的中点,
(1)求异面直线BE与PF所成角的余弦值;
(2)在直线EF上,是否存在一点Q,使得PQ∥平面EBD,若存在,求出该点;若不存在请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.复数z=($\frac{1+i}{-1+i}$)2016+i3(i为虚数单位)的共轭复数为(  )
A.1+2iB.1+iC.1-iD.1-2i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=lnx-x.
(1)证明:对任意的x1,x2∈(0,+∞),都有|f(x1)|>$\frac{ln{x}_{2}}{{x}_{2}}$;
(2)设m>n>0,比较$\frac{f(m)+m-(f(n)+n)}{m-n}$与$\frac{m}{{m}^{2}-{n}^{2}}$的大小,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设集合A={x|-1<x<1},集合B={x|0<x<2},则A∩B等于(  )
A.{x|-1<x<0}B.{x|0<x<1}C.{x|1<x<2}D.{x|-1<x<2}

查看答案和解析>>

同步练习册答案