精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x2+2x+alnx
(1)若f(x)是区间(0,1)上单调函数,求a的取值范围;
(2)若?t≥1,f(2t-1)≥2f(t)-3,试求a的取值范围.
分析:(1)先求出导函数,然后根据f(x)是区间(0,1)上单调函数,可转化成?x(0,1),f'(x)≥0或?x∈(0,1)f'(x)≤0恒成立,将a分离出来,即可求出a的范围;
(2)先化简f(2t-1)≥2f(t)-3得2(t-1)22alnt+aln(2t-1)≥0,令g(t)=2(t-1)2-2alnt+aln(2t-1),讨论a与2的大小,利用导数研究g(t)的最小值恒大于等于0即可求出a的范围.
解答:解:(1)f′(x)=2x+2+
a
x

∵f(x)在(0,1)上单调
∴?x(0,1),f'(x)≥0或?x∈(0,1)f'(x)≤0
∴a≥-2(x2+x)或a≤-2(x2+x)
从而a≥0或a≤-4(7分)
(2)f(2t-1)≥2f(t)-3?2(t-1)22alnt+aln(2t-1)≥0①
令g(t)=2(t-1)2-2alnt+aln(2t-1)
g′(t)=4(t-1)-
2a
t
+
2a
2t-1
=
2(t-1)[2t(2t-1)-a]
t(2t-1)

当a≤2时
∵t≥1,
∴t-1≥0,2t(t-1)≥2
∴g'(t)≥0对t>1恒成立,
∴g(t)在[1,+∞)上递增,
∴g(t)≥g(1)=0,即1式对t≥1恒成立.
当a>2时,
令g'(t)<0且t>1,
解得1<t<
1+
1+4a
4

于是,g(t)在[1,
1+4a
4
]
上递减,在[
1+
1+4a
4
,+∞]
上递增,
从而有g(
1+
1+4a
4
)<g(1)=0
,即①式不可能恒成立.
综上所述a≤2.(16分)
点评:本题主要考查了利用导数研究函数的单调性,以及不等式恒成立问题,是考试中常考的题型,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分图象如图所示,则f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:深圳一模 题型:解答题

已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案