精英家教网 > 高中数学 > 题目详情

函数f(x)=ax|x-b|在区间[0,+∞)上是增函数的充要条件是________.

a>0且b≤0
分析:可将此函数的解析式化为分段函数的形式,由于要研究函数在区间[0,+∞)上的单调性,只需要研究x≥b这一段上的函数的性质,可先由a>0且b≤0证明函数是增函数,此是证明充分性,再由函数在区间[0,+∞)上是增函数解得a>0且b≤0,此是证明必要性,再由充要条件的定义得出答案即可
解答:f(x)=ax|x-b|=,由函数的解析式知,x=两段上函数图象的对称轴,
当a>0且b≤0时,函数在[b,+∞)是增函数,故在区间[0,+∞)上是增函数
当函数在区间[0,+∞)上是增函数时,必有a>0,≤0,即a>0且b≤0
综上证明知,a>0且b≤0是函数f(x)=ax|x-b|在区间[0,+∞)上是增函数的充要条件
故答案为:a>0且b≤0
点评:本题考查函数单调性的判断与证明,函数充要条件的判断,解题的关键是理解充要条件的证明方法及函数单调性的判断规则,本题的重点是函数单调性的判断规则及求函数单调性区间的方法本题考查了数形结合的思想
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=ax+
bx
+c(a>0)的图象在点(1,f(1))处的切线方程为y=x-1.
(1)用a表示出b,c;
(2)若f(x)≥lnx在[1,+∞)上恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知实数a≠0,函数f(x)=ax(x-2)2(x∈R)
(Ⅰ)若函数f(x)有极大值32,求实数a的值;
(Ⅱ)若对于x∈[-2,1],不等式f(x)<
329
恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=ax(a>0且a≠1)在[-1,1]上的最大值与最小值之和为
10
3
,则a的值为
3或
1
3
3或
1
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax+b,其中f(0)=-2,f(2)=0,则f(3)=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•惠州模拟)(注:本题第(2)(3)两问只需要解答一问,两问都答只计第(2)问得分)
已知函数f(x)=ax+xln|x+b|是奇函数,且图象在点(e,f(e))处的切线斜率为3(e为自然对数的底数).
(1)求实数a、b的值;
(2)若k∈Z,且k<
f(x)x-1
对任意x>1恒成立,求k的最大值;
(3)当m>n>1(m,n∈Z)时,证明:(nmmn>(mnnm

查看答案和解析>>

同步练习册答案