【题目】如图,在直角坐标
中,设椭圆
的左右两个焦点分别为
,过右焦点
且与
轴垂直的直线
与椭圆
相交,其中一个交点为
.![]()
(1)求椭圆
的方程;
【答案】
(1)解:由椭圆定义可知 ![]()
由题意
,
.
又由Rt△
可知
,
,
,
又
,得 ![]()
椭圆
的方程为 ![]()
(2)已知
经过点
且斜率为
直线
与椭圆
有两个不同的
和
交点,请问是否存在常数
,使得向量
与
共线?如果存在,求出
的值;如果不存在,请说明理由.
解:设直线
的方程为
,
代入椭圆方程,得
.
整理,得
①
因为直线
与椭圆
有两个不同的交点
和
等价于
,
解得
.
设
,则
=
,
由①得
②
又
③
因为
, 所以
.
所以
与
共线等价于
.
将②③代入上式,解得
.
因为 ![]()
所以不存在常数
,使得向量
与
共线
【解析】(1)根据题目中所给的条件的特点,由椭圆定义可知|MF1|+|MF2|=2a,由题意|MF2|=1,由Rr△MF1F2可知b的值,则椭圆C的方程可求;
(2)利用向量共线的条件建立等式,再根据韦达定理,由此能求出不存在这样的常数k满足条件.解题时要认真审题,注意向量共线的条件的合理运用.
科目:高中数学 来源: 题型:
【题目】已知圆C的方程:x2+y2﹣2x﹣4y+m=0,其中m<5.
(1)若圆C与直线l:x+2y﹣4=0相交于M,N两点,且|MN|=
,求m的值;
(2)在(1)条件下,是否存在直线l:x﹣2y+c=0,使得圆上有四点到直线l的距离为
,若存在,求出c的范围,若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某玩具生产公司每天计划生产卫兵、骑兵、伞兵这三种玩具共
个,生产一个卫兵需
分钟,生产一个骑兵需
分钟,生产一个伞兵需
分钟,已知总生产时间不超过
小时,若生产一个卫兵可获利润
元,生产一个骑兵可获利润
元,生产一个伞兵可获利润
元.![]()
(1)用每天生产的卫兵个数
与骑兵个数
表示每天的利润
(元);
(2)怎么分配生产任务才能使每天的利润最大,最大利润是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】平面α过正方体ABCD﹣A1B1C1D1的面对角线
,且平面α⊥平面C1BD,平面α∩平面ADD1A1=AS,则∠A1AS的正切值为( )
A.![]()
B.![]()
C.![]()
D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P﹣ABCD中,底面ABCD是正方形,E、F分别为PC、BD的中点,侧面PAD⊥底面ABCD.
(1)求证:EF∥平面PAD;
(2)若EF⊥PC,求证:平面PAB⊥平面PCD.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“石头、剪刀、布”,又称“猜丁壳”,是一种流传多年的猜拳游戏,起源于中国,然后传到日本、朝鲜等地,随着亚欧贸易的不断发展,它传到了欧洲,到了近代逐渐风靡世界.其游戏规则是:出拳之前双方齐喊口令,然后在话音刚落时同时出拳,握紧的拳头代表“石头”,食指和中指伸出代表“剪刀”,五指伸开代表“布”.“石头”胜“剪刀”、“剪刀”胜“布”、而“布”又胜过“石头”.若所出的拳相同,则为和局.小千和大年两位同学进行“五局三胜制”的“石头、剪刀、布”游戏比赛,则小千和大年比赛至第四局小千胜出的概率是( )
A.![]()
B.![]()
C.![]()
D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知在四棱锥C﹣ABDE中,DB⊥平面ABC,AE∥DB,△ABC是边长为2的等边三角形,AE=1,M为AB的中点. ![]()
(1)求证:CM⊥EM;
(2)若直线DM与平面ABC所成角的正切值为2,求二面角B﹣CD﹣E的大小.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com