精英家教网 > 高中数学 > 题目详情

如图甲,在平面四边形ABCD中,已知∠A=45°,∠C=90°,∠ADC=105°,AB=BD,现将四边形ABCD沿BD折起,使平面ABD⊥平面BDC(如图乙),设点E、F分别为棱AC、AD的中点.

(1)求证:DC⊥平面ABC;
(2)求BF与平面ABC所成角的正弦值;
(3)求二面角B-EF-A的余弦值.

(1)见解析(2)(3)-

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,在三棱锥中,直线平面,且
,又点分别是线段的中点,且点是线段上的动点.
证明:直线平面
(2) 若,求二面角的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,三棱锥中,,点在平面内的射影恰为的重心,M为侧棱上一动点.

(1)求证:平面平面
(2)当M为的中点时,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在斜三棱柱中,O是AC的中点,平面.

(1)求证:平面
(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,直三棱柱ABCA1B1C1中,D、E分别是AB、BB1的中点,AA1=AC=CB=AB.

(1)证明:BC1∥平面A1CD;
(2)求二面角DA1CE的正弦值..

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,三棱柱ABC-A1B1C1的所有棱长都是2,又AA1⊥平面ABC,D,E分别是AC,CC1的中点.

(1)求证:AE⊥平面A1BD.
(2)求二面角D-BA1-A的余弦值.
(3)求点B1到平面A1BD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图几何体中,四边形为矩形,.

(1)若的中点,证明:
(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在直角梯形中,,如图,把沿翻折,使得平面平面

(1)求证:
(2)若点为线段中点,求点到平面的距离;
(3)在线段上是否存在点,使得与平面所成角为?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在四棱锥P-ABCD中,底面ABCD是边长为1的正方形,且PA⊥平面ABCD.
 
(1)求证:PCBD
(2)过直线BD且垂直于直线PC的平面交PC于点E,且三棱锥E-BCD的体积取到最大值.
①求此时四棱锥E-ABCD的高;
②求二面角A-DE-B的正弦值的大小.

查看答案和解析>>

同步练习册答案