精英家教网 > 高中数学 > 题目详情
如图所示,四边形ABCD中,AB⊥AD,AD∥BC,AD=6,BC=4,AB=2,点E、F分别在BC、AD上,EF∥AB.现将四边形ABEF沿EF折起,使平面ABEF⊥平面EFDC,设AD中点为P.

(1)当E为BC中点时,求证:CP∥平面ABEF;
(2)设BE=x,问当x为何值时,三棱锥ACDF的体积有最大值?并求出这个最大值.
(1)见解析  (2)当x=3时, 有最大值,最大值为3

(1)证明:取AF的中点Q,
连接QE、QP,
则QPDF,
又DF=4,EC=2,且DF∥EC,
所以QPEC,
即四边形PQEC为平行四边形,
所以CP∥EQ,
又EQ?平面ABEF,CP?平面ABEF,
故CP∥平面ABEF.
(2)解:因为平面ABEF⊥平面EFDC,
平面ABEF∩平面EFDC=EF,
又AF⊥EF,所以AF⊥平面EFDC.
由已知BE=x,所以AF=x(0<x≤4),FD=6-x.
=··2·(6-x)·x
=(6x-x2)
=[-(x-3)2+9]
=-(x-3)2+3,
∴当x=3时,有最大值,最大值为3.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,为圆的直径,点在圆上,且,矩形所在的平面和圆所在的平面互相垂直,且.

(1)设的中点为,求证:平面
(2)求四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

一个圆锥的表面积为,且它的侧面展开图是一个半圆,则圆锥的底面半径为     

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知直角梯形,沿折叠成三棱锥,当三棱锥体积最大时,求此时三棱锥外接球的体积

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

棱长为1的正方体的8个顶点都在球的表面上,分别是棱的中点,点分别是线段(不包括端点)上的动点,且线段平行于平面,则
(1)直线被球截得的线段长为
(2)四面体的体积的最大值是

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知一个四面体有五条棱长都等于2,则该四面体的体积最大值为(   )
A.B.1C.D.2

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图所示,已知三棱柱ABC-A1B1C1的所有棱长均为1,且AA1⊥底面ABC,则三棱锥B1-ABC1的体积为________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在球面上有四个点P、A、B、C,如果PA、PB、PC两两互相垂直,且PA=PB=PC=a,求这个球的表面积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知矩形ABCD的面积为8,当矩形ABCD周长最小时,沿对角线AC把△ACD折起,则三棱锥外接球表面积等于(  )
A.8πB.16πC.48πD.50π

查看答案和解析>>

同步练习册答案