精英家教网 > 高中数学 > 题目详情
已知一个四面体有五条棱长都等于2,则该四面体的体积最大值为(   )
A.B.1C.D.2
B

试题分析:由两个边长为2的正三角形组成的二面角的角度为的时候,体积最大,最大值为.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图所示,四边形ABCD中,AB⊥AD,AD∥BC,AD=6,BC=4,AB=2,点E、F分别在BC、AD上,EF∥AB.现将四边形ABEF沿EF折起,使平面ABEF⊥平面EFDC,设AD中点为P.

(1)当E为BC中点时,求证:CP∥平面ABEF;
(2)设BE=x,问当x为何值时,三棱锥ACDF的体积有最大值?并求出这个最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

一个正方体的体积是8,则这个正方体的内切球的表面积是(   )
A.8π
B.6π
C.4π
D.π

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若一个圆锥的侧面展开图是面积为2的半圆面,则该圆锥的体积为      

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

圆锥的表面积是底面积的倍,那么该圆锥的侧面展开图扇形的圆心角为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

将边长为的正方形沿对角线折起,使,则三棱锥的体积为(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,底面边长为a,高为h的正三棱柱ABC-A1B1C1,其中D是AB的中点,E是BC的三等分点.求几何体BDEA1B1C1的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

ABCD在同一个球的球面上,ABBCAC=2,若四面体ABCD体积的最大值为,则这个球的表面积为(  )
A.B.8π C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

直三棱柱各侧棱和底面边长均为,点上任意一点,连接,,,,则三棱锥的体积为(     )
A.B.C.D.

查看答案和解析>>

同步练习册答案