精英家教网 > 高中数学 > 题目详情
已知函数f(x)=ex(e=2.71828…是自然对数的底数),x∈R.
(Ⅰ)求函数y=f(x)的图象过原点的切线方程;
(Ⅱ)设x>0,讨论曲线y=f(x)与曲线y=mx2(m>0)公共点的个数;
(Ⅲ)设a<b,证明
f(a)+f(b)
2
f(b)-f(a)
b-a
考点:利用导数研究曲线上某点切线方程,利用导数求闭区间上函数的最值
专题:综合题,导数的综合应用
分析:(I)先求出其反函数,利用导数得出切线的斜率即可;
(II)由f(x)=mx2,令h(x)=
ex
x2
(x>0),利用导数研究函数h(x)的单调性即可得出;
(III)利用作差法
f(a)+f(b)
2
f(b)-f(a)
b-a
=
(b-a+2)+(b-a-2)eb-a
2(b-a)
ea
,令g(x)=x+2+(x-2)ex(x>0),利用导数研究其单调性即可证明.
解答: (Ⅰ)解:设切线方程为y=kx,切点为(x0,y0),则
kx0=ex0
k=ex0

∴x0=1,k=e,
∴函数y=f(x)的图象过原点的切线方程为y=ex;
(Ⅱ)解:当x>0,m>0时,令f(x)=mx2,化为m=
ex
x2

令h(x)=
ex
x2
(x>0),则h′(x)=
ex(x-2)
x3

则x∈(0,2)时,h′(x)<0,h(x)单调递减;x∈(2,+∞)时,h′(x)>0,h(x)单调递增.
∴当x=2时,h(x)取得极小值即最小值,h(2)=
e2
4

∴当m∈(0,
e2
4
)时,曲线y=f (x) 与曲线y=mx2(m>0)公共点的个数为0;
当m=
e2
4
时,曲线y=f (x) 与曲线y=mx2(m>0)公共点的个数为1;
当m>
e2
4
时,曲线y=f (x) 与曲线y=mx2(m>0)公共点个数为2.
(Ⅲ)证明:
f(a)+f(b)
2
f(b)-f(a)
b-a
=
(b-a+2)+(b-a-2)eb-a
2(b-a)
ea

令g(x)=x+2+(x-2)ex(x>0),则g′(x)=1+(x-1)ex
g′′(x)=xex>0,∴g′(x)在(0,+∞)上单调递增,且g′(0)=0,
∴g′(x)>0,∴g(x)在(0,+∞)上单调递增,
而g(0)=0,∴在(0,+∞)上,有g(x)>g(0)=0.
∵当x>0时,g(x)=x+2+(x-2)•ex>0,且a<b,
(b-a+2)+(b-a-2)eb-a
2(b-a)
ea
>0,
即当a<b时,
f(a)+f(b)
2
f(b)-f(a)
b-a
点评:本题综合考查了利用导数研究切线、单调性、方程得根的个数、比较两个实数的大小等基础知识,考查了分类讨论的思想方法、转化与化归思想方法,考查了推理能力和计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知△ABC中,平面内一点P满足
CP
=
2
3
CA
+
1
3
CB
,若|
PB
|=t|
PA
|,则t的值为(  )
A、3
B、
1
3
C、2
D、
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,程序框图(算法流程图)的输出结果是(  )
A、11B、15C、16D、22

查看答案和解析>>

科目:高中数学 来源: 题型:

已知四棱锥P-ABCD,现要在四棱锥的各个面上涂色,有4种不同的颜色可供选择,要求相邻的面不同色,则不同的涂色方法有(  )种.
A、60B、120C、48D、72

查看答案和解析>>

科目:高中数学 来源: 题型:

设{an}的首项为a1,公差为-1的等差数列,Sn为其前n项和,若S1,S2,S4成等比数列,则a1=(  )
A、2
B、-2
C、
1
2
D、-
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}的前n项和是Sn,a1=1,数列{bn}对于任意的n∈N*都有2nSn=n2bn成立,且b3=a2+a3
(1)求数列{an}、{bn}的通项公式;
(2)如果数列{bn}的前n项和为Tn,对于任意的n∈N*都有k(Tn+2)≥S2n恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知0<a<1,求证:
1
a
+
4
1-a
≥9.

查看答案和解析>>

科目:高中数学 来源: 题型:

己知数列{an}满足a1=1,a2n-a2n-1=2,a2n+1-a2n=3n(n∈N*).
(I)计算:(a3-a1)+(a5-a3),并求a5
(Ⅱ)求a2n-1(用含n的式子表示);
(Ⅲ)记bn=a2n-1+a2n,数列{bn}的前n项和为Sn,求Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

在等差数列{an}中,已知a3=3,a2+a8=10,则an=
 

查看答案和解析>>

同步练习册答案