精英家教网 > 高中数学 > 题目详情
6.在对人们的休闲方式的一次调查中,共调查了124人,其中女性70人,男性54人,女性中有43人主要的休闲方式是看电视,其余人主要的休闲方式是运动;男性中有21人主要的休闲方式是看电视,其余人主要的休闲方式是运动.
(1)根据以上数据建立一个2×2的列联表;
看电视运动合计
男性21
女性4370
合计124
(2)能否在犯错误的概率不超过0.01的前提下,认为休闲方式与性别有关系.
参考临界值表
P(k2>k)0.500.400.250.150.100.050.0250.0100.0050.001
k0.4550.7081.3232.0722.7063.845.0246.6357.87910.83

分析 (1)由已知数据即可得出表格.
(2)利用k2计算公式得出,通过比较临界值表即可得出.

解答 解:(1)

看电视运动合计
男性213354
女性432770
合计6460124
(2)k2=$\frac{124×(43×33-21×27)^{2}}{70×54×64×60}$≈6.201<6.635.
所以不能在犯错误的概率不超过0.01的前提下认为休闲方式与性别有关系.

点评 本题考查了独立性检验原理,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.设函数f(x)=lnx-$\frac{1}{2}$ax2-bx
(1)当a=b=$\frac{1}{2}$时,求函数f(x)的单调区间;
(2)设F(x)=f(x)+$\frac{1}{2}$ax2+bx+$\frac{a}{x}$.对任意x∈(0,3],总有F′(x)≤$\frac{1}{2}$成立,求实数a的取值范围;
(3)当a=0,b=-1时,方程f(x)=mx在区间[1,e2]内有唯一实数解,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若直线y=x+t与椭圆$\frac{x^2}{4}+{y^2}=1$相交于A,B两点,当|t|变化时,|AB|的最大值为(  )
A.2B.$\frac{{4\sqrt{5}}}{5}$C.$\frac{{4\sqrt{10}}}{5}$D.$\frac{{8\sqrt{10}}}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设数列{an}的通项公式为an=pn+q(n∈N*,P>0).数列{bn}定义如下:对于正整数m,bm是使得不等式an≥m成立的所有n中的最小值.
(Ⅰ)若p=$\frac{1}{2},q=-\frac{2}{3}$,求b3
(Ⅱ)若p=2,q=-1,求数列{bm}的前2m项和公式;
(Ⅲ)是否存在p和q,使得bm=4m+1(m∈N*)?如果存在,求p和q的取值范围;如不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若关于x的函数f(x)=$\frac{t{x}^{2}+2x+{t}^{2}+sinx}{{x}^{2}+t}$(t>0)的最大值为M,最小值为N,且M+N=6,则实数t的值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.某调查机构为了研究“户外活动的时间长短”与“患感冒”两个分类变量是否相关,在该地随机抽取了若干名居民进行调查,得到数据如表所示:
患感冒不患感冒合计
活动时间超过1小时204060
活动时间低于1小时301040
合计5050100
若从被调查的居民中随机抽取1人,则取到活动时间超过1小时的居民的概率为$\frac{3}{5}$.
(1)完善上述2×2列联表;
(2)能否在犯错误的概率不超过0.1%的前提下,认为“户外活动的时间长短”与“患感冒”两者间相关.
P(K2≥k00.0100.0050.001
k06.6357.87910.828

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知AB是椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的长轴,若把该长轴2010等分,过每个等分点作AB的垂线,依次交椭圆的上半部分于点P1,P2,…,P2009,设左焦点为F1,则$\frac{1}{2010}$(|F1A|+|F1P1|+|F1P2|+…+|F1P2009|+|F1B|)=$\frac{2011}{2010}a$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若函数f(x)在R上可导,其导函数为f′(x),且函数y=(1-x)f′(x)的图象如图所示,则下列结论中一定成立的是(  )
A.函数f(x)有极大值f(-2),无极小值B.函数f(x)有极大值f(1),无极小值
C.函数f(x)有极大值f(-2)和极小值f(1)D.函数f(x)有极大值f(1)和极小值f(-2).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知圆(x-1)2+(y-1)2=4上到直线y=x+b的距离等于1的点有且仅有2个,则b的取值范围是(  )
A.(-$\sqrt{2}$,0)U(0,$\sqrt{2}$)B.(-3$\sqrt{2}$,3$\sqrt{2}$)C.(-3$\sqrt{2}$,-$\sqrt{2}$)U($\sqrt{2}$,3$\sqrt{2}$)D.(-3$\sqrt{2}$,-$\sqrt{2}$]U($\sqrt{2}$,3$\sqrt{2}$)

查看答案和解析>>

同步练习册答案