精英家教网 > 高中数学 > 题目详情
12.若变量x、y满足$\left\{\begin{array}{l}{x+y≤-1}\\{2x-3y≤9}\\{x≥0}\end{array}\right.$,则x2+y2的最小值是(  )
A.$\frac{\sqrt{2}}{2}$B.1C.3D.$\frac{1}{2}$

分析 作出不等式组对应的平面区域,利用两点间的距离公式进行求解即可.

解答 解:作出不等式组对应的平面区域如图:
x2+y2的几何意义是区域内的点到原点的距离的平方,
由图象知A点到原点的距离最小,此时最小值为d=1,
则x2+y2的最小值是d2=1,
故选:B

点评 本题主要考查线性规划的应用,利用两点间的距离公式结合数形结合是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.定义在R上的偶函数f(x)满足:对于任意的x1,x2∈(-∞,0](x1≠x2),有(x2-x1)[f(x2)-f(x1)]>0,则当n∈N*时,有(  )
A.f(-n)<f(n-1)<f(n+1)B.f(n-1)<f(-n)<f(n+1)C.f(n+1)<f(-n)<f(n-1)D.f(n+1)<f(n-1)<f(-n)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知集合A={x∈N*|-2<x≤2},B={y|y=2x,x∈A}|,C={z|z=1+log2y,y∈B},则A∩C=(  )
A.{1,2}B.{2}C.{2,3,4}D.{1,2,3,4}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=ax2+4x-1.
(1)当a=1时,对任意x1,x2∈R,且x1≠x2,试比较f($\frac{{x}_{1}+{x}_{2}}{2}$)与$\frac{f({x}_{1})+f({x}_{2})}{2}$的大小;
(2)对于给定的正实数a,有一个最小的负数g(a),使得x∈[g(a),0]时,-3≤f(x)≤3都成立,则当a为何值时,g(a)最小,并求出g(a)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在△ABC中,角A,B,C所对的边分别是a,b,c,且满足cos2C-cos2A=2cos($\frac{π}{6}$-C)cos($\frac{π}{6}$+C).
(1)求角A的大小;
(2)若A<$\frac{π}{2}$,BC=$\sqrt{3}$,且sinA+sin(B-C)=2sin2C,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.将某选手的9个得分去掉一个最高分,去掉一个最低分,7个剩余分数的平均分为91,现场作的9个得分的茎叶图,后来有一个数据模糊,无法辨认,在图中以x表示,则x为4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=ex(ax2+bx+c)的导函数y=f′(x)的两个零点为-3和0.(其中e=2.71828…)
(Ⅰ)当a>0时,求f(x)的单调区间;
(Ⅱ)若f(x)的极小值为-e3,求f(x)在区间[-5,1]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知函数f(x)=x2+2x+a,g(x)=lnx-2x,如果存在${x_1}∈[{\frac{1}{2},2}]$,使得对任意的${x_2}∈[{\frac{1}{2},2}]$,都有f(x1)≤g(x2)成立,则实数a的取值范围是(-∞,ln2-$\frac{21}{4}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知点A($\sqrt{3}$,0)和P($\sqrt{3}$,t)(t∈R),若曲线x2+y2=3上存在点B使∠APB=60°,则t的最大值为(  )
A.$\sqrt{3}$B.2C.1+$\sqrt{3}$D.3

查看答案和解析>>

同步练习册答案