精英家教网 > 高中数学 > 题目详情
5.己知PE、PF是⊙O的切线,A、B是一组对径点,PB交⊙O于另一点C,直线AF、BE交于D点.求证:∠PCD=∠PCE.

分析 连接AE,OE,OF,PD.可得∠AEB=∠OEP=∠OFP=90°,OE=OB=OA=OF,∠OEF=∠OFE=$\frac{1}{2}$∠EPF,∠PEB=∠PCE,∠OEB=∠OBE.可得:点D在以P为圆心,PE的长为半径的圆上.进而证明E,C,D,P四点共圆,即可得出结论.

解答 证明:连接AE,OE,OF,PD.可得∠AEB=∠OEP=∠OFP=90°,OE=OB=OA=OF,
∠OEF=∠OFE=$\frac{1}{2}$∠EPF,∠PEB=∠PCE,
∠OEB=∠OBE.
∵∠EDA=∠EBA-∠BAD=∠BEO-∠BEF=∠OEF=$\frac{1}{2}∠EPF$,PE=PF.
∴点D在以P为圆心,PE的长为半径的圆上.
∴PE=PD,∴∠PED=∠PDE,∠ECP=∠PDE,
∴E,C,D,P四点共圆,
∴∠PED=∠PCD.
∴∠PCD=∠PCE.

点评 本题考查了圆的性质、圆的切线的性质、四点共圆,本题条件比较多,考查了较强的推理能力与计算能力,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.双曲线 $\frac{x^2}{{1+{k^2}}}-\frac{y^2}{{8-{k^2}}}=1$(k为常数)的焦点坐标是(  )
A.(0,±3)B.(±3,0)C.(±1,0)D.(0,±1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.函数$f(x)=lg(x+1)+\frac{1}{x}$的定义域是(-1,0)∪(0,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设Sn为等差数列{an}的前n项和,a1=-2,S3=0,则{an}的公差为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知m、n是两条不同的直线,α、β、γ是三个不同的平面,则下列命题中不正确的序号有(  )
①若α⊥β,α∩β=m,且n⊥m,则n⊥α或n⊥β
②若m不垂直于α,则m不可能垂直于α内的无数条直线
③若α∩β=m,n∥m,且n?α,n?β,则n∥α且n∥β
④若α⊥β,m∥n,n⊥β,则m∥α
A.①②③④B.C.①④D.①②④

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,已知圆N:x2+(y+$\sqrt{5}$)2=36,P是圆N上的点,点Q在线段NP上,且有点D(0,$\sqrt{5}$)和DP上的点M,满足$\overrightarrow{DP}$=2$\overrightarrow{DM}$,$\overrightarrow{MQ}$•$\overrightarrow{DP}$=0.
(1)当P在圆上运动时,求点Q的轨迹方程;
(2)若斜率为$\frac{3}{2}$的直线l与(1)中所求Q的轨迹交于不同两点A、B,又点C($\frac{4}{3}$,2),求△ABC面积最大值时对应的直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知两条不同直线a,b及平面α,则下列命题中真命题是(  )
A.若a∥α,b∥α,则a∥bB.若a∥b,b∥α,则a∥αC.若a⊥α,b⊥α,则a∥bD.若a⊥α,b⊥a,则b⊥α

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设$a={({\frac{1}{2}})^{\frac{1}{2}}},b={({\frac{1}{2}})^{\frac{1}{3}}},c={log_{\frac{1}{2}}}2$,则(  )
A.a<b<cB.a<c<bC.c<a<bD.c<b<a

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设数列{an}的前n项和${S_n}=\frac{{{3^{n+1}}-3}}{2}$,数列{bn}满足${b_n}=\frac{1}{{(n+1){{log}_3}{a_n}}}$,数列{cn}满足cn=(2n+1)an
(1)求数列{an}的通项公式;
(2)求数列{bn}的前n项和Bn
(3)求数列{cn}的前n项和Cn

查看答案和解析>>

同步练习册答案