精英家教网 > 高中数学 > 题目详情

已知函数f(x)=x2ln(ax)(a>0)
(1)若f′(x)≤x2对任意的x>0恒成立,求实数a的取值范围;
(2)当a=1时,设函数,若x1,x2∈(,1),x1+x2<1,求证:x1x2<(x1+x24

解:(1)

上恒成立


时,单调减
时,单调增
所以时,有最大值

所以
(2)当时,
g′(x)=

所以在是增函数
上是减函数
因为
所以

同理
所以
又因为
当且仅当时,取等号


所以
所以
所以
练习册系列答案
  • 1加1阅读好卷系列答案
  • 专项复习训练系列答案
  • 初中语文教与学阅读系列答案
  • 阅读快车系列答案
  • 完形填空与阅读理解周秘计划系列答案
  • 英语阅读理解150篇系列答案
  • 奔腾英语系列答案
  • 标准阅读系列答案
  • 53English系列答案
  • 考纲强化阅读系列答案
  • 年级 高中课程 年级 初中课程
    高一 高一免费课程推荐! 初一 初一免费课程推荐!
    高二 高二免费课程推荐! 初二 初二免费课程推荐!
    高三 高三免费课程推荐! 初三 初三免费课程推荐!
    相关习题

    科目:高中数学 来源: 题型:

    精英家教网已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
    π
    2
    )的部分图象如图所示,则f(x)的解析式是(  )
    A、f(x)=2sin(πx+
    π
    6
    )(x∈R)
    B、f(x)=2sin(2πx+
    π
    6
    )(x∈R)
    C、f(x)=2sin(πx+
    π
    3
    )(x∈R)
    D、f(x)=2sin(2πx+
    π
    3
    )(x∈R)

    查看答案和解析>>

    科目:高中数学 来源: 题型:

    (2012•深圳一模)已知函数f(x)=
    1
    3
    x3+bx2+cx+d
    ,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
    (1)求f(x);
    (2)设g(x)=x
    f′(x)
     , m>0
    ,求函数g(x)在[0,m]上的最大值;
    (3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

    查看答案和解析>>

    科目:高中数学 来源: 题型:

    (2011•上海模拟)已知函数f(x)=(
    x
    a
    -1)2+(
    b
    x
    -1)2,x∈(0,+∞)
    ,其中0<a<b.
    (1)当a=1,b=2时,求f(x)的最小值;
    (2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
    (3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
    求证:f1(x)+f2(x)>
    4c2
    k(k+c)

    查看答案和解析>>

    科目:高中数学 来源:上海模拟 题型:解答题

    已知函数f(x)=(
    x
    a
    -1)2+(
    b
    x
    -1)2,x∈(0,+∞)
    ,其中0<a<b.
    (1)当a=1,b=2时,求f(x)的最小值;
    (2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
    (3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
    求证:f1(x)+f2(x)>
    4c2
    k(k+c)

    查看答案和解析>>

    科目:高中数学 来源:深圳一模 题型:解答题

    已知函数f(x)=
    1
    3
    x3+bx2+cx+d
    ,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
    (1)求f(x);
    (2)设g(x)=x
    f′(x)
     , m>0
    ,求函数g(x)在[0,m]上的最大值;
    (3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

    查看答案和解析>>

    同步练习册答案