精英家教网 > 高中数学 > 题目详情
(2012•月湖区模拟)①(极坐标与参数方程选讲选做题)已知点P(1+cosα,sinα),参数α∈[0,π],点Q在曲线C:ρ=
9
2
sin(θ+
π
4
)
上,则点P与点Q之间距离的最小值为
4
2
-1
4
2
-1

②(不等式选讲选做题)若存在实数x满足|x-3|+|x-m|<5,则实数m的取值范围是
(-2,8)
(-2,8)
分析:①把曲线C的极坐标方程化为直角坐标方程,它表示一条直线,本题即求点P(1+cosα,sinα)到直线 x+y=9的距离
8-
2
sin(α+
π
4
)
2
,再由
8-
2
sin(α+
π
4
)
2
8-
2
2
,求出它的最小值.
②由于|x-3|+|x-m|的最小值为|m-3|,由题意可得|m-3|<5,由此 解得实数m的取值范围.
解答:解:①曲线C:ρ=
9
2
sin(θ+
π
4
)
即 ρcosθ+ρsinθ=9,化为直角坐标方程为 x+y=9,表示一条直线.
点P与点Q之间距离的最小值为点P(1+cosα,sinα)到直线 x+y=9的距离,即
|1+cosα+sinα-9|
2
=
8-
2
sin(α+
π
4
)
2
8-
2
2
=4
2
-1,
故答案为 4
2
-1.
②由于|x-3|+|x-m|的最小值为|m-3|,若存在实数x满足|x-3|+|x-m|<5,则有|m-3|<5,解得-2<m<8,
故答案为 (-2,8).
点评:本题主要考查绝对值不等式的解法,把极坐标方程化为直角坐标方程的方法,点到直线的距离公式的应用,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•月湖区模拟)已知函数f(x)=
3
sinxcosx-cos2x-
1
2
,x∈R.
(1)求函数f(x)的最大值和最小正周期;
(2)设△ABC的内角A,B,C的对边分别a,b,c,且c=3,f(C)=0,若sin(A+C)=2sinA,求a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•月湖区模拟)复数
i20112i-1
(i为虚数单位)的虚部是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•月湖区模拟)已知数列{an}的通项公式是an=-n2+12n-32,其前n项和是Sn,对任意的m,n∈N*且m<n,则Sn-Sm的最大值是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•月湖区模拟)若二项式(a
x
-
1
x
)6
的展开式中的常数项为-160,则
a
1
(
x
-
1
x
)dx
=
4
2
-2
3
-ln2
4
2
-2
3
-ln2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•月湖区模拟)为缓解某路段交通压力,计划将该路段实施“交通银行”.在该路段随机抽查了50人,了解公众对“该路段限行”的态度,将调查情况进行整理,制成下表:
年龄(岁) [15,25) [25,) [35,45) [45,55) [55,65) [65,75)
频数 5 10 15 10 5 5
赞成人数 4 8 9 6 4 3
(I)作出被调查人员年龄的频率分布直方图;
(II)若从年龄在[15,25),[25,35)的被调查者中各随机选取两人进行追踪调查,记选中的4人中不赞成“交通银行”的人数为ξ,求随机变量ξ的分布列和数学期望.

查看答案和解析>>

同步练习册答案