如图,已知平行四边形ABCD中,BC=2,BD⊥CD,四边形ADEF为正方形,平面ADEF⊥平面ABCD.记CD=x,V(x)表示四棱锥F-ABCD的体积.
(1)求V(x)的表达式.
(2)求V(x)的最大值.
(1) V(x)= x(0<x<2) (2)
【解析】【思路点拨】利用体积公式得到V(x)的表达式,然后根据基本不等式或函数的知识求最大值.
【解析】
(1)∵平面ADEF⊥平面ABCD,交线为AD且FA⊥AD,∴FA⊥平面ABCD.
∵BD⊥CD,BC=2,CD=x,
∴FA=2,BD=(0<x<2),
∴S?ABCD=CD·BD=x,
∴V(x)=S?ABCD·FA=x(0<x<2).
(2)方法一:要使V(x)取得最大值,只需x=(0<x<2)取得最大值,
∵x2(4-x2)≤()2=4,
∴V(x)≤×2=.
当且仅当x2=4-x2,即x=时等号成立.
故V(x)的最大值为.
方法二:V(x)=x=
=.
∵0<x<2,∴0<x2<4,∴当x2=2,即x=时,V(x)取得最大值,且V(x)max=.
科目:高中数学 来源:2014年高考数学全程总复习课时提升作业四十六第七章第五节练习卷(解析版) 题型:填空题
如图,正方形BCDE的边长为a,已知AB=BC,将直角△ABE沿BE边折起,A点在平面BCDE上的射影为D点,则对翻折后的几何体有如下描述:
(1)AB与DE所成角的正切值是.
(2)三棱锥B-ACE的体积是a3.
(3)AB∥CD.
(4)平面EAB⊥平面ADE.
其中正确的叙述有 (写出所有正确结论的编号).
查看答案和解析>>
科目:高中数学 来源:2014年高考数学全程总复习课时提升作业四十二第七章第一节练习卷(解析版) 题型:解答题
已知正三棱锥V-ABC的正视图、侧视图和俯视图如图所示.
(1)画出该三棱锥的直观图.
(2)求出侧视图的面积.
查看答案和解析>>
科目:高中数学 来源:2014年高考数学全程总复习课时提升作业四十九第七章第八节练习卷(解析版) 题型:填空题
如图,正方体ABCD-A1B1C1D1的棱长为1,O是底面A1B1C1D1的中心,则点O到平面ABC1D1的距离为 .
查看答案和解析>>
科目:高中数学 来源:2014年高考数学全程总复习课时提升作业四十九第七章第八节练习卷(解析版) 题型:选择题
已知空间三点A(1,1,1),B(-1,0, 4),C(2,-2,3),则与的夹角θ的大小是( )
(A) (B)π (C) (D)π
查看答案和解析>>
科目:高中数学 来源:2014年高考数学全程总复习课时提升作业四十三第七章第二节练习卷(解析版) 题型:选择题
如图,在正四棱柱ABCD-A1B1C1D1中,AB=1,AA1=,点E为AB上的动点,则D1E+CE的最小值为( )
(A)2 (B)
(C)+1 (D)2+
查看答案和解析>>
科目:高中数学 来源:2014年高考数学全程总复习课时提升作业四十三第七章第二节练习卷(解析版) 题型:选择题
如图是某几何体的三视图,其中正视图和侧视图是半径为1的半圆,俯视图是个圆,则该几何体的全面积是( )
(A)π (B)2π (C)3π (D)4π
查看答案和解析>>
科目:高中数学 来源:2014年高考数学全程总复习课时提升作业四十七第七章第六节练习卷(解析版) 题型:选择题
已知点B是点A(3,7,-4)在xOz平面上的射影,则|OB|等于( )
(A)(9,0,16) (B)25
(C)5 (D)13
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com