精英家教网 > 高中数学 > 题目详情
在长方体ABCD-A1B1C1D1中,E∈CC1,B1E⊥BC1,AB=CD,求证:AC1⊥面B1ED1
考点:直线与平面垂直的判定
专题:空间位置关系与距离
分析:连接A1C1,证明AC1⊥B1D1.AC1⊥B1E,利用直线与平面垂直的判定定理证明AC1⊥平面EB1D1
解答: 证明:连接A1C1,由条件得A1B1C1D1是正方形,因此B1D1⊥A1C1
又AA1⊥平面A1B1C1D1,所以AA1⊥B1D1,因此B1D1⊥平面AA1C1
所以AC1⊥B1D1.同理可证:AC1⊥B1E.B1D1∩B1E=B1
所以AC1⊥平面EB1D1
点评:本题考查直线与平面垂直的判定定理的应用,考查空间想象能力以及计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数y=
log
1
2
(3x-2)
的定义域是(
2
3
,1]
 
.(判断对错)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知三棱柱ABC-A1B1C1,侧棱AA1垂直于底面ABC,∠BAC=90°,AB=AC=AA1=6,D为BC的中点.
(Ⅰ)若E为棱CC1的中点,求证:DE⊥A1C;
(Ⅱ)若E为棱CC1上的任意一点,求证:三棱锥A1-ADE的体积为定值,并求出此定值.γ

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在三棱柱ABC-A1B1C1中,
AE
=4
EA1
BF
=
FB1
CG
=
GC1
,面BCE、面ACF、面ABG相交于点O,则三棱柱的体积:三棱锥O-ABC=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数g(x)=x2+ln(x+a),其中a为常数.
(1)讨论函数g(x)的单调性;
(2)若g(x)存在两个极值点x1,x2,求证:无论实数a取什么值都有
g(x1)+g(x2)
2
>g(
x1+x2
2
)

查看答案和解析>>

科目:高中数学 来源: 题型:

在空间中,a,b是不重合的直线,α,β是不重合的平面,则下列条件中可推出a∥b的是(  )
A、a?α,b?β,α∥β
B、a∥α,b?β
C、a⊥α,b⊥β
D、a⊥α,b?α

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,a1=3,an+1=an+ln(1+
1
n
)(n∈N*)
则an=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在空间直角坐标系中,平面的方程为Ax+By+Cz+D=0,现有平面α的方程为x+y+z-2=0,则坐标原点到平面α的距离为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=
1-2x
+
1
x+3
的定义域为(  )
A、(-3,0]
B、(-3,1]
C、(-∞,-3)∪(-3,0]
D、(-∞,-3)∪(-3,1]

查看答案和解析>>

同步练习册答案