精英家教网 > 高中数学 > 题目详情
(2011•聊城一模)已知A,B是单位圆(O为圆心)上的两个定点,且∠AOB=60°,若C为该圆上的动点,且
OC
=x
OA
+y
OB
(x,y∈R)
,则xy的最大值为(  )
分析:
OC
=x
OA
+y
OB
,且向量的模都是1,
OA
OB
=
1
2
,平方可得1=x2+y2+xy≥3xy,再由x,y∈[0,1],
可得xy的范围.
解答:解:由
OC
=x
OA
+y
OB
OC
2
=x2
OA
2
+y2
OB
2
+2xy
OA
OB

|
OC
|=|
OA
|=|
OB
|=1,
OA
OB
=
1
2

∴1=x2+y2+xy≥3xy,得xy≤
1
3

而点C在以O为圆心的圆弧
AB
上变动,得x,y∈[0,1],
于是,0≤xy≤
1
3

故选D.
点评:此题是中档题.本题考查两个向量的数量积的定义以及基本不等式的应用,体现了数形结合的数学思想.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2011•聊城一模)已知点F1,F2分别为椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的左右焦点,P是椭圆C上的一点,且|F1F2|=2,∠F1PF2=
π
3
,△F1PF2
的面积为
3
3

(Ⅰ)求椭圆C的方程;
(Ⅱ)点M的坐标为(
5
4
,0)
,过点F2且斜率为k的直线l与椭圆C相交于A,B两点,对于任意的k∈R,
MA
MB
是否为定值?若是求出这个定值;若不是说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•聊城一模)在2010年上海世博会期间,小红计划对事先选定的10个场馆进行参观,在她选定的10个场馆中,有4个场馆分布在A片区,3个场馆分布在B片区,3个场馆分布在C片区.由于参观的人很多,在进入每个场馆前都需要排队等候,已知A片区的每个场馆的排队时间为2小时,B片区和C片区的每个场馆的排队时间都为1小时.参观前小红突然接到公司通知,要求她一天后务必返回,于是小红决定从这10个场馆中随机选定3个场馆进行参观.
(Ⅰ)求小红每个片区都参观1个场馆的概率;
(Ⅱ)设小红排队时间总和为ξ(小时),求随机变量ξ的分布列和数学期望Eξ.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•聊城一模)已知数列{an}的前n项和为Sn,且Sn=2an-2(n∈N*),数列{bn}是等差数列,且b1=3,b10-b4=6
(Ⅰ)求数列{an}和{bn}的通项公式;
(Ⅱ)设cn=
bnan
,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•聊城一模)函数f(x)=4cosx-ex2的图象可能是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•聊城一模)执行如图所示的程序框图后,若输出的结果为16,则判断框内应填(  )

查看答案和解析>>

同步练习册答案