精英家教网 > 高中数学 > 题目详情
13.若${x}^{\frac{3}{4}}$=3$\sqrt{3}$,则x=9.

分析 直接利用方程的乘方运算在求解即可.

解答 解:方程${x}^{\frac{3}{4}}$=3$\sqrt{3}$,
化为:${x}^{\frac{3}{4}}$=${(\sqrt{3})}^{3}$=${3}^{\frac{3}{2}}$,
可得${x}^{\frac{1}{2}}=3$,
解得x=9.
故答案为:9.

点评 本题考查函数的零点以及方程的根的求法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=x+$\frac{2x}{{4}^{x}-1}$.
(1)求函数f(x)的定义域;
(2)判断f(x)的奇偶性,并给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.设函数f(x)=$\frac{sinθ}{3}$x3+$\frac{\sqrt{3}cosθ}{2}$x2+tanθ,其中θ∈[0,$\frac{π}{2}$],则导数f′(1)的取值范围是[1,2].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设M=${∫}_{1}^{2}$log${\;}_{\frac{1}{2}}$xdx,N=${∫}_{1}^{2}$log${\;}_{\frac{1}{3}}$xdx,则(  )
A.M>NB.M<NC.|M|<|N|D.|M|=|N|

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知向量$\overrightarrow{a}$=($\sqrt{3}$,1),$\overrightarrow{b}$=(0,-2),$\overrightarrow{c}$=(k,$\sqrt{3}$).
(Ⅰ)若$\overrightarrow{a}$+2$\overrightarrow{b}$与$\overrightarrow{c}$共线,求实数k的值;
(Ⅱ)若$\overrightarrow{b}$=$\overrightarrow{a}$+m$\overrightarrow{c}$,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.化简:$(\sqrt{\frac{1-sinα}{1+sinα}}-\sqrt{\frac{1+sinα}{1-sinα}})$($\sqrt{\frac{1-cosα}{1+cosα}}-\sqrt{\frac{1+cosα}{1-cosα}}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设x∈R,且2x2+y2=2,求x$\sqrt{1+{y}^{2}}$的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=1+$\frac{4}{x}$,g(x)=log2x.
(1)设函数h(x)=g(x)-f(x),求函数h(x)在区间[2,4]上的值域;
(2)定义min{p,q}表示p,q中较小者,设函数H(x)=min{f(x),g(x)}(x>0).
①求函数H(x)的单调区间及最值;
②若关于x的方程H(x)=k有两个不同的实根,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设f(x)定义于实数集上,当x>0时,f(x)>1,且对于任意实数x,y,有f(x+y)=f(x)•f(y),求证:f(x)在R上为增函数.

查看答案和解析>>

同步练习册答案